源码下载:
快速运行攻略(MindX SDK环境已经部署完毕情况下):
1、获取模型文件
(1)MobilenetV2_for_PyTorch_1.2.onnx文件
https://gitee.com/ai_samples/pytorch_models/tree/master/cv/classification/mobilenet
存放到 image_mobilenetv2/data/models/mobilenet 目录下
2、模型文件转换
(1)image_mobilenetv2/data/models/mobilenet目录下执行模型转换,根据芯片类型,执行atc_310.sh 或 atc_310P3.sh
bash atc_310.sh
bash atc_310P3.sh
3、修改run_cpp.sh & run_python.sh中MX_SDK_HOME为MindX SDK安装目录
export MX_SDK_HOME=/usr/local/sdk_home/mxVision
4、执行run_cpp.sh 或者 run_python.sh
bash run_cpp.sh
bash run_python.sh
一、安装昇腾驱动
先安装昇腾驱动,昇腾驱动请参考各个产品安装手册,安装完成后npu-smi info 显示安装成功
[root@localhost ~]#
[root@localhost ~]# npu-smi info
+-------------------------------------------------------------------------------------------------+
| npu-smi 22.0.2 Version: 22.0.2 |
+------------------+--------------+---------------------------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page) |
| Chip Device | Bus-Id | AICore(%) Memory-Usage(MB) |
+==================+==============+===============================================================+
| 1 310 | OK | 12.8 45 0 / 0 |
| 0 0 | 0000:05:00.0 | 0 2621 / 8192 |
+==================+==============+===============================================================+
二、安装MindX SDK > mxVision
(1)MindX SDK需要通过官网获取。
(2)mxVision说明手册:
(3)安装MindX SDK
./Ascend-mindxsdk-mxvision_3.0.RC2_linux-aarch64.run --install --install-path=/usr/local/sdk_home
--install-path为指定安装的路径
(4)安装成功后会提示如下信息
Installing collected packages:mindx
Successfully installed mindx-3.0.RC2
(5)安装成功后在对应目录下查看,能看到mxVision
[root@localhost sdk_home]#
[root@localhost sdk_home]# pwd
/usr/local/sdk_home
[root@localhost sdk_home]# ls
mxVision mxVision-3.0.RC2
[root@localhost sdk_home]#
[root@localhost sdk_home]#
(6)MindX SDK使用中需要用到OSD功能,安装后需要执行以下命令,生成om文件
bash /usr/local/sdk_home/mxVision/operators/opencvosd/generate_osd_om.sh
执行成功后,显示如下效果
[root@localhost ~]# bash /usr/local/sdk_home/mxVision/operators/opencvosd/generate_osd_om.sh
ASCEND_HOME is set to /usr/local/Ascend by user
Set ASCEND_VERSION to the default value:ascend-toolkit/latest
ATC start working now,please wait for a moment.
ATC run success, welcome to the next use.
The model has been successfully converted to om,please get it under /usr/local/sdk_home/mxVision/operators/opencvosd.
[root@localhost ~]#
(9)安装完MindX SDK后,需要配置环境变量
.bashrc文件添加以下环境变量
# 安装mxVision时配置
. /usr/local/sdk_home/mxVision/set_env.sh
用户也可以通过修改~/.bashrc文件方式设置永久环境变量,操作如下:
a) 以运行用户在任意目录下执行vi ~/.bashrc命令,打开.bashrc文件,在文件最后一行后面添加上述内容。
b) 执行:wq!命令保存文件并退出。
c) 执行source ~/.bashrc命令使其立即生效。
三、ATC模型转换
1、把训练好的mobilenetv2.pth模型转MobilenetV2_for_PyTorch_1.2.onnx后,放在image_mobilenetv2/data/models/mobilenet目录下
获取路径:
https://gitee.com/ai_samples/pytorch_models/tree/master/cv/classification/mobilenet
[root@localhost mobilenet]#
[root@localhost mobilenet]# ls
aipp_mobilenet_rgb.config atc_310.sh atc_310P3.sh imagenet1000_clsidx_to_labels.names mobilenet.cfg MobilenetV2_for_PyTorch_1.2.onnx
[root@localhost mobilenet]#
2、执行模型转换命令
Ascend310芯片模型转换命令如下:
atc \
--mode=0 \
--framework=5 \
--model=./MobilenetV2_for_PyTorch_1.2.onnx \
--output=./mobilenet \
--input_format=NCHW \
--input_shape="actual_input_1:1,3,336,336" \
--enable_small_channel=1 \
--log=error \
--soc_version=Ascend310 \
--insert_op_conf=aipp_mobilenet_rgb.config
Ascend310P3芯片模型转换命令如下:
atc \
--mode=0 \
--framework=5 \
--model=./MobilenetV2_for_PyTorch_1.2.onnx \
--output=./mobilenet \
--input_format=NCHW \
--input_shape="actual_input_1:1,3,336,336" \
--enable_small_channel=1 \
--log=error \
--soc_version=Ascend310P3 \
--insert_op_conf=aipp_mobilenet_rgb.config
参数说明:
--model:待转换的ONNX模型。
--framework:5代表ONNX模型。
--output:输出的om模型。
--input_format:输入数据的格式。
actual_input_1:取值根据实际使用场景确定。
--input_shape:输入数据的shape。
--enable_small_channel=1:对于mobilenet等视觉模型四维数据卷积算子的特殊优化,可以提升性能,其他模型可能导致性能下降,不建议开启。
--insert_op_conf=./aipp_mobilenet_rgb.config:AIPP插入节点,通过config文件配置算子信息,功能包括图片色域转换、裁剪、归一化,主要用于处理原图输入数据,常与DVPP配合使用,详见下文数据预处理。
详细ATC命令转换学习请参考:
3、模型转换后,会在目录下生成mobilenet.om
[root@localhost mobilenet]#
[root@localhost mobilenet]# ls
aipp_mobilenet_rgb.config atc_310.sh atc_310P3.sh imagenet1000_clsidx_to_labels.names mobilenet.cfg mobilenet.om MobilenetV2_for_PyTorch_1.2.onnx
[root@localhost mobilenet]#
四、使用image_mobilenetv2
1、修改run_cpp.sh & run_python.sh中MX_SDK_HOME为MindX SDK安装目录
export MX_SDK_HOME=/usr/local/sdk_home/mxVision
2、执行run_cpp.sh 或者 run_python.sh
bash run_cpp.sh
bash run_python.sh
3、目标分类结果与test.jpg一致
目标分类结果:beagle
五、image_mobilenetv2详解
1、技术流程图
视频解码:调用OPENCV解码能力,转换为 YUV 格式图像数据。
图像缩放:调用OPENCV,将图像缩放到一定尺寸大小。
目标分类:MobileNetV2模型针对图像进行目标分类。
模型后处理:针对推理结果进行后处理文字转换。
数据序列化:将stream结果组装成json字符串输出。
2、pipeline详解
{
"classification": {
"stream_config": { ##设置业务流在哪个芯片上处理
"deviceId": "0"
},
"mxpi_imagedecoder0": { ##图像解码(OpenCV方式)
"props": {
"handleMethod": "opencv"
},
"factory": "mxpi_imagedecoder",
"next": "mxpi_imageresize0"
},
"mxpi_imageresize0": { ##图像缩放(OpenCV方式)
"props": {
"handleMethod": "opencv",
"resizeType": "Resizer_Stretch",
"resizeHeight": "336",
"resizeWidth": "336"
},
"factory": "mxpi_imageresize",
"next": "mxpi_tensorinfer0"
},
"mxpi_tensorinfer0": { ##模型推理
"props": {
"dataSource": "mxpi_imageresize0",
"modelPath": "data/models/mobilenet/mobilenet.om", ##模型路径
"waitingTime": "2000",
"outputDeviceId": "-1"
},
"factory": "mxpi_tensorinfer",
"next": "mxpi_classpostprocessor0"
},
"mxpi_classpostprocessor0": { ##模型后处理
"props": {
"dataSource": "mxpi_tensorinfer0",
"postProcessConfigPath": "data/models/mobilenet/mobilenet.cfg",
"labelPath": "data/models/mobilenet/imagenet1000_clsidx_to_labels.names",
"postProcessLibPath": "libresnet50postprocess.so"
},
"factory": "mxpi_classpostprocessor",
"next": "mxpi_dataserialize0"
},
"mxpi_dataserialize0": { ##数据序列化
"props": {
"outputDataKeys": "mxpi_classpostprocessor0"
},
"factory": "mxpi_dataserialize",
"next": "appsink0"
},
"appsrc1": {
"props": {
"blocksize": "409600"
},
"factory": "appsrc",
"next": "mxpi_imagedecoder0"
},
"appsink0": { ##输出推理结果
"props": {
"blocksize": "4096000"
},
"factory": "appsink"
}
}
}
3、C++源码详解
int main(int argc, char* argv[])
{
// 读取pipeline配置文件
std::string pipelineConfigPath = "data/pipeline/Sample.pipeline";
std::string pipelineConfig = ReadPipelineConfig(pipelineConfigPath);
if (pipelineConfig == "") {
LogError << "Read pipeline failed.";
return APP_ERR_COMM_INIT_FAIL;
}
// 初始化 Stream manager 资源
MxStream::MxStreamManager mxStreamManager;
APP_ERROR ret = mxStreamManager.InitManager();
if (ret != APP_ERR_OK) {
LogError << GetError(ret) << "Failed to init Stream manager.";
return ret;
}
// 根据指定的pipeline配置创建Stream
ret = mxStreamManager.CreateMultipleStreams(pipelineConfig);
if (ret != APP_ERR_OK) {
LogError << GetError(ret) << "Failed to create Stream.";
return ret;
}
// 读取测试图片
MxStream::MxstDataInput dataBuffer;
ret = ReadFile("data/test.jpg", dataBuffer);
if (ret != APP_ERR_OK) {
LogError << GetError(ret) << "Failed to read image file.";
return ret;
}
std::string streamName = "classification";
int inPluginId = 0;
// 发送测试图片到Stream进行推理
ret = mxStreamManager.SendData(streamName, inPluginId, dataBuffer);
if (ret != APP_ERR_OK) {
LogError << GetError(ret) << "Failed to send data to stream.";
delete dataBuffer.dataPtr;
dataBuffer.dataPtr = nullptr;
return ret;
}
// 获取推理结果
MxStream::MxstDataOutput* output = mxStreamManager.GetResult(streamName, inPluginId);
if (output == nullptr) {
LogError << "Failed to get pipeline output.";
delete dataBuffer.dataPtr;
dataBuffer.dataPtr = nullptr;
return ret;
}
// 打印推理结果
std::string result = std::string((char *)output->dataPtr, output->dataSize);
LogInfo << "Results:" << result;
// 销毁Stream
mxStreamManager.DestroyAllStreams();
delete dataBuffer.dataPtr;
dataBuffer.dataPtr = nullptr;
delete output;
return 0;
}
4、Python源码详解
if __name__ == '__main__':
# 初始化 Stream manager 资源
streamManagerApi = StreamManagerApi()
ret = streamManagerApi.InitManager()
if ret != 0:
print("Failed to init Stream manager, ret=%s" % str(ret))
exit()
# 根据指定的pipeline配置创建Stream
with open("data/pipeline/Sample.pipeline", 'rb') as f:
pipelineStr = f.read()
ret = streamManagerApi.CreateMultipleStreams(pipelineStr)
if ret != 0:
print("Failed to create Stream, ret=%s" % str(ret))
exit()
# 读取测试图片
dataInput = MxDataInput()
with open("data/test.jpg", 'rb') as f:
dataInput.data = f.read()
# 发送测试图片到Stream进行推理
streamName = b'classification'
inPluginId = 0
uniqueId = streamManagerApi.SendDataWithUniqueId(streamName, inPluginId, dataInput)
if uniqueId < 0:
print("Failed to send data to stream.")
exit()
# 获取推理结果
inferResult = streamManagerApi.GetResultWithUniqueId(streamName, uniqueId, 3000)
if inferResult.errorCode != 0:
print("GetResultWithUniqueId error. errorCode=%d, errorMsg=%s" % (
inferResult.errorCode, inferResult.data.decode()))
exit()
# 打印推理结果
print(inferResult.data.decode())
# 销毁Stream
streamManagerApi.DestroyAllStreams()
标签:MindX,mobilenet,05,--,mxpi,sh,root,SDK
From: https://www.cnblogs.com/hiascend/p/17031331.html