首页 > 其他分享 >眼疾图片识别

眼疾图片识别

时间:2023-01-05 11:55:33浏览次数:49  
标签:img 眼疾 self batch paddle channels 识别 data 图片

项目简介:

如今近视已经成为困扰人们健康的一项全球性负担,在近视人群中,有超过35%的人患有重度近视。近视会拉长眼睛的光轴,也可能引起视网膜或者络网膜的病变。随着近视度数的不断加深,高度近视有可能引发病理性病变,这将会导致以下几种症状:视网膜或者络网膜发生退化、视盘区域萎缩、漆裂样纹损害、Fuchs斑等。因此,及早发现近视患者眼睛的病变并采取治疗,显得非常重要。

数据集

https://pan.baidu.com/s/1XF-pn6h04SmU-4zONfCnig
提取码:iuzy
数据集下载自官网

iChallenge - PM是百度大脑和中山大学中山眼科中心联合举办的iChallenge比赛中,提供的关于病理性近视(Pathologic Myopia,PM)的医疗类数据集,包含1200个受试者的眼底视网膜图片,训练、验证和测试数据集各400张。
iChallenge - PM中既有病理性近视患者的眼底图片,也有非病理性近视患者的图片,命名规则如下:

  1. 病理性近视(PM):文件名以P开头
  2. 非病理性近视(non - PM):
  3. 高度近似(high)
  4. 正常眼睛(normal):文件名以N开头
  5. 我们将病理性患者的图片作为正样本,标签为1; 非病理性患者的图片作为负样本,标签为0。

模型

1. VGG

点击查看代码
# -*- coding = utf-8 -*-
# @Time : 2022/12/19 16:29

# @File : VGG.py
# @File : PyCharm
# coding:utf-8
import os
import cv2
import random
import numpy as np
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear, BatchNorm2D
import paddle.nn.functional as F


# 图像预处理
def transform_img(img):
    img = cv2.resize(img, (224, 224))
    img = np.transpose(img, (2, 0, 1))
    img = img.astype('float32')
    img = img / 255.0
    img = img * 2.0 - 1.0
    return img


# 定义训练集数据读取器
def data_loader(datadir, batch_size=10, mode='train'):
    filenames = os.listdir(datadir)

    def reader():
        if mode == 'train':
            random.shuffle(filenames)
        batch_imgs = []
        batch_labels = []
        for name in filenames:
            filepath = os.path.join(datadir, name)
            img = cv2.imread(filepath)
            img = transform_img(img)
            if name[0] == 'H' or name[0] == 'N':
                label = 0
            elif name[0] == 'P':
                label = 1
            else:
                raise ('Not excepted file name')
            batch_imgs.append(img)
            batch_labels.append(label)
            if len(batch_imgs) == batch_size:
                imgs_array = np.array(batch_imgs).astype('float32')
                labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
                yield imgs_array, labels_array
                batch_imgs = []
                batch_labels = []
        if len(batch_imgs) > 0:
            imgs_array = np.array(batch_imgs).astype('float32')
            labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
            yield imgs_array, labels_array

    return reader


# 定义验证集数据读取器
def valid_data_loader(datadir, csvfile, batch_size=10, mode='valid'):
    filelists = open(csvfile).readlines()

    def reader():
        batch_imgs = []
        batch_labels = []
        for line in filelists[1:]:
            line = line.strip().split(',')
            if line[0] == '':
                break
            name = line[1]
            label = int(line[2])
            filepath = os.path.join(datadir, name)
            img = cv2.imread(filepath)
            img = transform_img(img)
            batch_imgs.append(img)
            batch_labels.append(label)
            if len(batch_imgs) == batch_size:
                imgs_array = np.array(batch_imgs).astype('float32')
                labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
                yield imgs_array, labels_array
                batch_imgs = []
                batch_labels = []
        if len(batch_imgs) > 0:
            imgs_array = np.array(batch_imgs).astype('float32')
            labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
            yield imgs_array, labels_array

    return reader

DATADIR = './data/PALM-Training400'
DATADIR2 = './data/PALM-Validation400'
CSVFILE = './data/labels.csv'

EPOCH_NUM = 20


def train_pm(model, optimizer):
    use_gpu = True
    paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')

    print('start training ...')
    model.train()
    train_loader = data_loader(DATADIR, batch_size=10, mode='train')
    valid_loader = valid_data_loader(DATADIR2, CSVFILE)
    for epoch in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            x_data, y_data = data
            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)
            logits = model(img)
            loss = F.binary_cross_entropy_with_logits(logits, label)
            avg_loss = paddle.mean(loss)

            if batch_id % 20 == 0:
                print("epoch:{}, batch_id:{}, loss:{:.4f}".format(epoch + 1, batch_id, float(avg_loss.numpy())))

            avg_loss.backward()
            optimizer.step()
            optimizer.clear_grad()

        model.eval()
        accuracies = []
        losses = []
        for batch_id, data in enumerate(valid_loader()):
            x_data, y_data = data
            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)
            logits = model(img)
            pred = F.sigmoid(logits)
            loss = F.binary_cross_entropy_with_logits(logits, label)
            pred2 = pred * (-1.0) + 1.0
            pred = paddle.concat([pred2, pred], axis=1)
            acc = paddle.metric.accuracy(pred, paddle.cast(label, dtype='int64'))
            accuracies.append(acc.numpy())
            losses.append(loss.numpy())
        print("[validation] accuracy/loss: {:.4f}/{:.4f}".format(np.mean(accuracies), np.mean(losses)))
        model.train()

        paddle.save(model.state_dict(), 'palm.pdparams')
        paddle.save(optimizer.state_dict(), 'palm.pdopt')


class VGG(paddle.nn.Layer):
    def __init__(self):
        super(VGG, self).__init__()

        in_channels = [3, 64, 128, 256, 512, 512]

        self.conv1_1 = Conv2D(in_channels=in_channels[0], out_channels=in_channels[1], kernel_size=3, padding=1,
                              stride=1)
        self.conv1_2 = Conv2D(in_channels=in_channels[1], out_channels=in_channels[1], kernel_size=3, padding=1,
                              stride=1)

        self.conv2_1 = Conv2D(in_channels=in_channels[1], out_channels=in_channels[2], kernel_size=3, padding=1,
                              stride=1)
        self.conv2_2 = Conv2D(in_channels=in_channels[2], out_channels=in_channels[2], kernel_size=3, padding=1,
                              stride=1)

        self.conv3_1 = Conv2D(in_channels=in_channels[2], out_channels=in_channels[3], kernel_size=3, padding=1,
                              stride=1)
        self.conv3_2 = Conv2D(in_channels=in_channels[3], out_channels=in_channels[3], kernel_size=3, padding=1,
                              stride=1)
        self.conv3_3 = Conv2D(in_channels=in_channels[3], out_channels=in_channels[3], kernel_size=3, padding=1,
                              stride=1)

        self.conv4_1 = Conv2D(in_channels=in_channels[3], out_channels=in_channels[4], kernel_size=3, padding=1,
                              stride=1)
        self.conv4_2 = Conv2D(in_channels=in_channels[4], out_channels=in_channels[4], kernel_size=3, padding=1,
                              stride=1)
        self.conv4_3 = Conv2D(in_channels=in_channels[4], out_channels=in_channels[4], kernel_size=3, padding=1,
                              stride=1)

        self.conv5_1 = Conv2D(in_channels=in_channels[4], out_channels=in_channels[5], kernel_size=3, padding=1,
                              stride=1)
        self.conv5_2 = Conv2D(in_channels=in_channels[5], out_channels=in_channels[5], kernel_size=3, padding=1,
                              stride=1)
        self.conv5_3 = Conv2D(in_channels=in_channels[5], out_channels=in_channels[5], kernel_size=3, padding=1,
                              stride=1)

        self.fc1 = paddle.nn.Sequential(paddle.nn.Linear(512 * 7 * 7, 4096), paddle.nn.ReLU())
        self.drop1_ratio = 0.5
        self.dropout1 = paddle.nn.Dropout(self.drop1_ratio, mode='upscale_in_train')

        self.fc2 = paddle.nn.Sequential(paddle.nn.Linear(4096, 4096), paddle.nn.ReLU())

        self.drop2_ratio = 0.5
        self.dropout2 = paddle.nn.Dropout(self.drop2_ratio, mode='upscale_in_train')
        self.fc3 = paddle.nn.Linear(4096, 1)

        self.relu = paddle.nn.ReLU()
        self.pool = MaxPool2D(stride=2, kernel_size=2)

    def forward(self, x):
        x = self.relu(self.conv1_1(x))
        x = self.relu(self.conv1_2(x))
        x = self.pool(x)

        x = self.relu(self.conv2_1(x))
        x = self.relu(self.conv2_2(x))
        x = self.pool(x)

        x = self.relu(self.conv3_1(x))
        x = self.relu(self.conv3_2(x))
        x = self.relu(self.conv3_3(x))
        x = self.pool(x)

        x = self.relu(self.conv4_1(x))
        x = self.relu(self.conv4_2(x))
        x = self.relu(self.conv4_3(x))
        x = self.pool(x)

        x = self.relu(self.conv5_1(x))
        x = self.relu(self.conv5_2(x))
        x = self.relu(self.conv5_3(x))
        x = self.pool(x)

        x = paddle.flatten(x, 1, -1)
        x = self.dropout1(self.relu(self.fc1(x)))
        x = self.dropout2(self.relu(self.fc2(x)))
        x = self.fc3(x)
        return x


model = VGG()
opt = paddle.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameters=model.parameters())

train_pm(model, opt)

2.LeNet

点击查看代码
# -*- coding = utf-8 -*-
# @Time : 2022/12/18 9:50

# @File : predict_Pathologic_Myopia.py
# @File : PyCharm
# coding:utf-8




#数据集介绍:
# iChallenge - PM是百度大脑和中山大学中山眼科中心联合举办的iChallenge比赛中,提供的关于病理性近视(Pathologic
# Myopia,PM)的医疗类数据集,包含1200个受试者的眼底视网膜图片,训练、验证和测试数据集各400张。

# iChallenge - PM中既有病理性近视患者的眼底图片,也有非病理性近视患者的图片,命名规则如下:
# 病理性近视(PM):文件名以P开头
# 非病理性近视(non - PM):
# 高度近似(high
# 正常眼睛(normal):文件名以N开头
# 我们将病理性患者的图片作为正样本,标签为1; 非病理性患者的图片作为负样本,标签为0。

import os
import cv2
import random #随机打乱数据
import numpy as np
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear, BatchNorm2D#卷积网络 层
import paddle.nn.functional as F

# 1.对读入的图像进行预处理
def transform_img(img):
    #将图片尺寸缩放到224*224
    img = cv2.resize(img, (224, 224))
    # 读入的图像数据格式是[H,W,C]
    # 使用转置操作将其变成[C,H,W],通道的调换顺序调换为RGB
    img = np.transpose(img, (2, 0, 1))
    #将每个元素转成float32
    img = img.astype('float32')
    # 将其数据范围调整到[-1.0,1.0]之间
    img = img / 255.0#[0,1]
    img = img * 2.0 - 1.0#[-1,1]
    return img


# 2.定义训练集数据读取器
def data_loader(datadir, batch_size=10, mode='train'):
    # 将datadir目录下文件列出来,每条文件都要读入
    filenames = os.listdir(datadir)

    def reader():
        if mode == 'train':
            # 将训练集的数据随机打乱
            random.shuffle(filenames)
        #两个list装每个batch中的数据与标签
        batch_imgs = []
        batch_labels = []
        for name in filenames:
            # 拼接出每张图片的完整路径
            filepath = os.path.join(datadir, name)
            # 调用cv2.imread来读取图片
            img = cv2.imread(filepath)
            # 图片进行预处理,来去得到这张图片他本身
            img = transform_img(img)
            if name[0] == 'H' or name[0] == 'N':
                # H开头的文件名表示高度近视,N开头的文件名表示视力正常
                # 高度近视与正常视力的样本,都不是病理性的,属于负样本,标签为0
                label = 0
            elif name[0] == 'P':
                # P开头的是病理性近视,属于正样本,标签为1
                label = 1
            else:
                raise('Not excepted file name')
            # 每读取一个样本的数据,就将其放入数据列表中
            batch_imgs.append(img)
            batch_labels.append(label)
            if len(batch_imgs) == batch_size:
                # 当数据列表的长度等于batch_imgs的时候,
                # 把这些数据当作一个mini-batch,并作为数据生成器的一个输出
                imgs_array = np.array(batch_imgs).astype('float32')
                labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
                yield imgs_array, labels_array
                batch_imgs = []
                batch_labels = []

        if len(batch_imgs) > 0:
            # 剩余样本数目不足一个batch_size的数据,一起打包成mini-batch
            imgs_array = np.array(batch_imgs).astype('float32')
            labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
            yield imgs_array, labels_array

    return reader

# 设置迭代轮数5
EPOCH_NUM = 5

#3.定义训练过程
def train_pm(model, optimizer):
    # 选择gpu或者cpu,此处gpu:0
    # use_gpu = True
    # paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')

    print('start training ...')
    model.train()
    # 定义数据读取器,训练数据读取器和验证数据读取器
    train_loader = data_loader(DATADIR, batch_size=10, mode='train')
    for epoch in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            x_data, y_data = data
            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)
            # 运行模型前向计算,得到预测值
            logits = model(img)
            loss = F.binary_cross_entropy_with_logits(logits, label)
            avg_loss = paddle.mean(loss)

            if batch_id % 20 == 0:
                print("epoch:{}, batch_id:{}, loss:{:.4f}".format(epoch + 1, batch_id, float(avg_loss.numpy())))
            # 反向传播,更新权重,清除梯度
            avg_loss.backward()
            optimizer.step()
            optimizer.clear_grad()

        model.eval()
        accuracies = []
        losses = []
        valid_loader = data_loader(DATADIR, batch_size=10, mode='eval')
        # 分批次 验证
        for batch_id, data in enumerate(valid_loader()):
            x_data, y_data = data
            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)
            # 运行模型的前向计算,得到预测值
            logits = model(img)
            # 二分类,sigmoid计算后的记过以0.5为阈值分成两类
            # 计算sigmoid后的预测概率,进行loss计算
            pred = F.sigmoid(logits)
            loss = F.binary_cross_entropy_with_logits(logits, label)
            # 计算概率小于0.5的类别
            pred2 = pred * (-1.0) + 1.0
            # 得到两个类别(pred:正例,pred2:负例)的预测概率,并沿第一个维度级联
            pred = paddle.concat([pred2, pred], axis=1)
            acc = paddle.metric.accuracy(pred, paddle.cast(label, dtype='int64'))

            accuracies.append(acc.numpy())
            losses.append(loss.numpy())
        print("[validation] accuracy/loss: {:.4f}/{:.4f}".format(np.mean(accuracies), np.mean(losses)))
        model.train()

        # 保存模型中参数,保存优化器的参数
        paddle.save(model.state_dict(), 'palm.pdparams')
        paddle.save(optimizer.state_dict(), 'palm.pdopt')

#4.定义评估过程
def evaluation(model, params_file_path):

    # use_gpu = True
    # paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')

    print('start evaluation .......')
    #加载之前保存的模型参数
    model_state_dict = paddle.load(params_file_path)
    model.load_dict(model_state_dict)

    model.eval()
    # 调用data_loader,获取reader
    eval_loader = data_loader(DATADIR, batch_size=10, mode='eval')

    acc_set = []
    avg_loss_set = []
    for batch_id, data in enumerate(eval_loader()):
        x_data, y_data = data
        img = paddle.to_tensor(x_data)
        label = paddle.to_tensor(y_data)
        y_data = y_data.astype(np.int64)
        label_64 = paddle.to_tensor(y_data)
        # model.forward计算预测和精度
        prediction, acc = model(img, label_64)
        # 计算损失函数值
        loss = F.binary_cross_entropy_with_logits(prediction, label)

        avg_loss = paddle.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))
    # 求平均精度
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    print('loss={:.4f}, acc={:.4f}'.format(avg_loss_val_mean, acc_val_mean))

# 定义 LeNet 网络结构
class LeNet(paddle.nn.Layer):
    def __init__(self, num_classes=1):
        super(LeNet, self).__init__()

        # 创建卷积和池化层块,每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化
        self.conv1 = Conv2D(in_channels=3, out_channels=6, kernel_size=5)
        self.max_pool1 = MaxPool2D(kernel_size=2,stride=2)
        self.conv2 = Conv2D(in_channels=6, out_channels=16, kernel_size=5)
        self.max_pool2 = MaxPool2D(kernel_size=2,stride=2)
        # 创建第3个卷积层
        self.conv3 = Conv2D(in_channels=16, out_channels=120, kernel_size=4)
        # 创建全连接层,第一个全连接层的输出神经元个数为64, 第二个全连接层输出神经元个数为分类标签的类别数
        self.fc1 = Linear(in_features=300000, out_features=64)
        self.fc2 = Linear(in_features=64, out_features=num_classes)

    # 网络的前向计算过程,定义输出每一层的结果,
    # 后续将结果写入VisualDL日志文件,实现每一层输出图片的可视化
    def forward(self, x,label=None):
        x = self.conv1(x)
        x = F.sigmoid(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.sigmoid(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.sigmoid(x)
        x = paddle.reshape(x,[x.shape[0],-1])#做reshape连接全连接层
        x = self.fc1(x)
        x = F.sigmoid(x)
        x = self.fc2(x)
        if label is not None:
            acc = paddle.metric.accuracy(input=x,label=label)
            return x, acc
        else:
            return x

# 查看数据形状:
DATADIR = './data/PALM-Training400'
# 创建模型
model = LeNet(num_classes=1)
# 启动训练过程
opt = paddle.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameters=model.parameters())
train_pm(model,optimizer=opt)
evaluation(model, params_file_path="palm.pdparams")




3.AlexNet

点击查看代码
# -*- coding = utf-8 -*-
# @Time : 2022/12/18 9:50

# @File : predict_Pathologic_Myopia.py
# @File : PyCharm
# coding:utf-8

import os
import cv2
import random #随机打乱数据
import numpy as np
import paddle
from paddle import nn
from paddle.nn import Conv2D, MaxPool2D, Linear, BatchNorm2D, AdaptiveAvgPool2D, Dropout  # 卷积网络 层
import paddle.nn.functional as F

# 1.对读入的图像进行预处理
def transform_img(img):
    #将图片尺寸缩放到224*224
    img = cv2.resize(img, (224, 224))
    # 读入的图像数据格式是[H,W,C]
    # 使用转置操作将其变成[C,H,W],通道的调换顺序调换为RGB
    img = np.transpose(img, (2, 0, 1))
    #将每个元素转成float32
    img = img.astype('float32')
    # 将其数据范围调整到[-1.0,1.0]之间
    img = img / 255.0#[0,1]
    img = img * 2.0 - 1.0#[-1,1]
    return img


# 2.定义训练集数据读取器
def data_loader(datadir, batch_size=10, mode='train'):
    # 将datadir目录下文件列出来,每条文件都要读入
    filenames = os.listdir(datadir)

    def reader():
        if mode == 'train':
            # 将训练集的数据随机打乱
            random.shuffle(filenames)
        #两个list装每个batch中的数据与标签
        batch_imgs = []
        batch_labels = []
        for name in filenames:
            # 拼接出每张图片的完整路径
            filepath = os.path.join(datadir, name)
            # 调用cv2.imread来读取图片
            img = cv2.imread(filepath)
            # 图片进行预处理,来去得到这张图片他本身
            img = transform_img(img)
            if name[0] == 'H' or name[0] == 'N':
                # H开头的文件名表示高度近视,N开头的文件名表示视力正常
                # 高度近视与正常视力的样本,都不是病理性的,属于负样本,标签为0
                label = 0
            elif name[0] == 'P':
                # P开头的是病理性近视,属于正样本,标签为1
                label = 1
            else:
                raise('Not excepted file name')
            # 每读取一个样本的数据,就将其放入数据列表中
            batch_imgs.append(img)
            batch_labels.append(label)
            if len(batch_imgs) == batch_size:
                # 当数据列表的长度等于batch_imgs的时候,
                # 把这些数据当作一个mini-batch,并作为数据生成器的一个输出
                imgs_array = np.array(batch_imgs).astype('float32')
                labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
                yield imgs_array, labels_array
                batch_imgs = []
                batch_labels = []

        if len(batch_imgs) > 0:
            # 剩余样本数目不足一个batch_size的数据,一起打包成mini-batch
            imgs_array = np.array(batch_imgs).astype('float32')
            labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
            yield imgs_array, labels_array

    return reader

# 设置迭代轮数5
EPOCH_NUM = 5

#3.定义训练过程
def train_pm(model, optimizer):
    # 选择gpu或者cpu,此处gpu:0
    # use_gpu = True
    # paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')

    print('start training ...')
    model.train()
    # 定义数据读取器,训练数据读取器和验证数据读取器
    train_loader = data_loader(DATADIR, batch_size=10, mode='train')
    for epoch in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            x_data, y_data = data
            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)
            # 运行模型前向计算,得到预测值
            logits = model(img)
            loss = F.binary_cross_entropy_with_logits(logits, label)
            avg_loss = paddle.mean(loss)

            if batch_id % 20 == 0:
                print("epoch:{}, batch_id:{}, loss:{:.4f}".format(epoch + 1, batch_id, float(avg_loss.numpy())))
            # 反向传播,更新权重,清除梯度
            avg_loss.backward()
            optimizer.step()
            optimizer.clear_grad()

        model.eval()
        accuracies = []
        losses = []
        valid_loader = data_loader(DATADIR, batch_size=10, mode='eval')
        # 分批次 验证
        for batch_id, data in enumerate(valid_loader()):
            x_data, y_data = data
            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)
            # 运行模型的前向计算,得到预测值
            logits = model(img)
            # 二分类,sigmoid计算后的记过以0.5为阈值分成两类
            # 计算sigmoid后的预测概率,进行loss计算
            pred = F.sigmoid(logits)
            loss = F.binary_cross_entropy_with_logits(logits, label)
            # 计算概率小于0.5的类别
            pred2 = pred * (-1.0) + 1.0
            # 得到两个类别(pred:正例,pred2:负例)的预测概率,并沿第一个维度级联
            pred = paddle.concat([pred2, pred], axis=1)
            acc = paddle.metric.accuracy(pred, paddle.cast(label, dtype='int64'))

            accuracies.append(acc.numpy())
            losses.append(loss.numpy())
        print("[validation] accuracy/loss: {:.4f}/{:.4f}".format(np.mean(accuracies), np.mean(losses)))
        model.train()

        # 保存模型中参数,保存优化器的参数
        paddle.save(model.state_dict(), 'palm.pdparams')
        paddle.save(optimizer.state_dict(), 'palm.pdopt')

#4.定义评估过程
def evaluation(model, params_file_path):

    # use_gpu = True
    # paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')

    print('start evaluation .......')
    #加载之前保存的模型参数
    model_state_dict = paddle.load(params_file_path)
    model.load_dict(model_state_dict)

    model.eval()
    # 调用data_loader,获取reader
    eval_loader = data_loader(DATADIR, batch_size=10, mode='eval')

    acc_set = []
    avg_loss_set = []
    for batch_id, data in enumerate(eval_loader()):
        x_data, y_data = data
        img = paddle.to_tensor(x_data)
        label = paddle.to_tensor(y_data)
        y_data = y_data.astype(np.int64)
        label_64 = paddle.to_tensor(y_data)
        # model.forward计算预测和精度
        prediction, acc = model(img, label_64)
        # 计算损失函数值
        loss = F.binary_cross_entropy_with_logits(prediction, label)

        avg_loss = paddle.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))
    # 求平均精度
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    print('loss={:.4f}, acc={:.4f}'.format(avg_loss_val_mean, acc_val_mean))






# 定义 AlexNet 网络结构
class AlexNet(paddle.nn.Layer):
    def __init__(self, num_classes=1):
        super(AlexNet, self).__init__()

        # AlexNet与LeNet一样也会同时使用卷积和池化层提取图像特征
        # 与LeNet不同的是激活函数换成了‘relu’
        self.conv1 = Conv2D(in_channels=3, out_channels=96, kernel_size=11, stride=4, padding=5)
        self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
        self.conv2 = Conv2D(in_channels=96, out_channels=256, kernel_size=5, stride=1, padding=2)
        self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
        self.conv3 = Conv2D(in_channels=256, out_channels=384, kernel_size=3, stride=1, padding=1)
        self.conv4 = Conv2D(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding=1)
        self.conv5 = Conv2D(in_channels=384, out_channels=256, kernel_size=3, stride=1, padding=1)
        self.max_pool5 = MaxPool2D(kernel_size=2, stride=2)

        self.fc1 = Linear(in_features=12544, out_features=4096)
        self.drop_ratio1 = 0.5
        self.drop1 = Dropout(self.drop_ratio1)
        self.fc2 = Linear(in_features=4096, out_features=4096)
        self.drop_ratio2 = 0.5
        self.drop2 = Dropout(self.drop_ratio2)
        self.fc3 = Linear(in_features=4096, out_features=num_classes)

    # 网络的前向计算过程,定义输出每一层的结果,
    # 后续将结果写入VisualDL日志文件,实现每一层输出图片的可视化
    def forward(self, x,label=None):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.max_pool5(x)
        x = paddle.reshape(x,[x.shape[0],-1])#做reshape连接全连接层
        x = self.fc1(x)
        x = F.relu(x)
        # 在全连接之后使用dropout抑制过拟合
        x = self.drop1(x)
        x = self.fc2(x)
        x = F.relu(x)
        # 在全连接之后使用dropout抑制过拟合
        x = self.drop2(x)
        x = self.fc3(x)
        if label is not None:
            acc = paddle.metric.accuracy(input=x, label=label)
            return x, acc
        else:
            return x


# 数据集所在文件:
DATADIR = './data/PALM-Training400'

# 创建模型
model = AlexNet(num_classes=1)


# 启动训练过程
opt = paddle.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameters=model.parameters())
train_pm(model,optimizer=opt)#训练模型
evaluation(model, params_file_path="palm.pdparams")#评估模型

实验结果

LeNet:

通过观察可以发现:loss没有下降,accuracy也没有上升

image

AlexNet:

loss明显下降,accuracy达到90%以上

image

VGG:

loss有效下降,accuracy达到90%以上
image

标签:img,眼疾,self,batch,paddle,channels,识别,data,图片
From: https://www.cnblogs.com/Ling-22/p/17027015.html

相关文章

  • CSS 干掉图片背景
    1.首先图片需要有一个容器,容器需要有背景颜色,默认是#fff<divclass="container"><imgsrc="xxx.png"alt=""/></div>2.然后指定混合模式和滤镜.container{b......
  • 1_使用swiper数组对象循环图片遇到的问题
    今天在练习微信小程序的swiper组件时,想用列表循环出图片,发现图片一直没出来,控制台也没有报错,后来仔细一看,原来是语法格式写错了。以下是我列表循环踩过的坑:一:微......
  • (15)Python识别文字,tesseract包
    使用python提供的tesseract包识别图片中的文字,但效果一般我的是在arch中实现的文章目录​​1、安装tesseract和英文和中文语言包​​​​2、安装必要的第三方库​​​​3、......
  • SiteFactory编辑器支持Word图片自动粘贴
    ​ 这种方法是servlet,编写好在web.xml里配置servlet-class和servlet-mapping即可使用后台(服务端)java服务代码:(上传至ROOT/lqxcPics文件夹下)<%@ page language="java"......
  • CSS - 背景,设置背景颜色,背景图片,背景图片的显示方式,背景图片的起始位置,背景是否滚掉,背
    1.设置背景颜色background-color:pink;background-color:rgb(255,192,203);/*第四个参数是设置透明度*/background-color:rgba(255,192,203,0.5); 2.设置背......
  • 微信小程序基础之媒体(图片,音频,视频)和地图的使用
    好久没有写过关于微信小程序的Demo了,今天向大家展示的关于媒体(图片,音频,视频)和地图的使用方法,希望对大家有所帮助,不喜勿喷,谢谢~代码中都有必要的文字注释,部分代码如下:图片:<!-......
  • 利用javaswing+百度云图像识别接口做一个简单的动植物图像识别
    importcom.baidu.aip.imageclassify.AipImageClassify;importcom.sun.prism.PresentableState;importorg.json.JSONObject;importjava.awt.*;importjava.awt.ev......
  • 图片格式转换之ImageMagick
    项目中需要实现一些图片文件到TIFF文件的转换,去网上下载了一些第三方软件。好的软件需要收费,免费的存在各种问题。自己动手,丰衣足食!众里寻他千百度,蓦然回首,那人就是Imag......
  • UniAPP离线车牌实时扫描识别
    插件说明UniAPP离线车牌实时扫描识别(Android平台)标签:车牌实时识别车牌离线识别车牌实时扫描车牌离线扫描车牌实时离线识别车牌实时离线扫描特点:1、使用方便,引入即可;2......
  • OBS的图片滚动方式
    OBS的图片滚动非常奇葩,它是无间隙的联动模式,想要实现从左到右或从右到左的漂移滚动,要么制成视频,或gif,或者:PS新建透明底色,尺寸50*1080等适合logo漂移的距离,根据OBS输出尺寸......