首页 > 其他分享 >基于准则匹配的图像对准

基于准则匹配的图像对准

时间:2023-01-02 12:34:22浏览次数:36  
标签:right 匹配 img 准则 sum 对准 raw end left

一、概述

  在图像处理相关的问题中,图像对准是一类典型的问题,也就是要将两幅图严丝合缝地对应起来。通常来讲,两幅图大小不一,一个是模板,一个是母图,也就是要在母图中搜寻定位到与模板图最为接近的区域。
  实现的方式有很多,惯常使用的是基于准则匹配的方法和基于特征匹配的方法。基于准则匹配,就是直接地对图的灰度值矩阵进行计算操作,以特定的准则遍历整个母图,找到与目标图(模板图)最相近的子区域;基于特征匹配,就是先提取出图像特征,再基于特征进行操作。这里对基于准则匹配的图像对准基本方法做简单介绍。

二、匹配准则

  常见的匹配准则有SAD、MAD、SSD、MSD、NCC。前四种是基于两个矩阵的向量差做运算,NCC是计算两个矩阵的相关系数。事实上,矩阵是一个高阶向量(二阶张量),对两个矩阵向量作差,就得到差向量,对差向量做分析运算,便可在一定程度上获得两个矩阵间的差异性信息。
设\(A=\left( a_{ij} \right)\),\(B=\left( b_{ij} \right)\),\(i=1,2,...,M\),\(j=1,2,...,N\).则差向量
\(\begin{equation} \begin{aligned} D&=A-B\\&=\left( a_{ij}-b_{ij} \right) \end{aligned} \end{equation}\)

(1) SAD

  SAD,绝对误差算法(Sum of Absolute Differences),它是差向量D中各元素的绝对值之和,也就是L1范数,是两个向量间的曼哈顿距离。表达式为
\(\begin{equation} \begin{aligned}SAD=\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left| a_{ij}-b_{ij} \right|}}\end{aligned} \end{equation}\)

(2) MAD

  MAD,平均绝对误差算法(Mean Absolute Differences),它是在SAD基础上进一步求平均值。表达式为
\(\begin{equation} \begin{aligned}MAD=\frac{1}{M\times N}\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left| a_{ij}-b_{ij} \right|}}\end{aligned} \end{equation}\)

(3) SSD

  SSD,误差平方和算法(Sum of Squared Differences),它是差向量D中各元素的平方和。表达式为
\(\begin{equation} \begin{aligned}SSD=\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-b_{ij} \right)^{2}}}\end{aligned} \end{equation}\)

(4) MSD

  MSD,平均误差平方和算法(Mean Square Differences),它是在SSD的基础上进一步求平均值。表达式为
\(\begin{equation} \begin{aligned}MSD=\frac{1}{M\times N}\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-b_{ij} \right)^{2}}}\end{aligned} \end{equation}\)

(5) NCC

  NCC,归一化互相关算法(Normalized Cross Correlation)。若将两个矩阵看做两个随机变量,那么NCC就是两个变量之间的皮尔逊相关系数。同时,它也是两个矩阵向量在各自中心化之后彼此间空间夹角的余弦值。它的表达式为
\(\begin{equation} \begin{aligned}NCC=\frac{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-E(A) \right)\left( b_{ij}-E(B) \right)}}}{\sqrt{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-E(A) \right)^{2}}}}\cdot\sqrt{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( b_{ij}-E(B) \right)^{2}}}}}\end{aligned} \end{equation}\)
  易知,ncc值的范围为 \([−1,1]\),越接近1,两个矩阵越相关;越接近-1,两个矩阵越不相关。


等同于皮尔逊相关系数
  皮尔逊相关系数,用以衡量两个变量间的线性相关性。它的表达式为
\(\begin{equation} \begin{aligned} Pearson&=\frac{Cov\left( X,Y \right)}{\sqrt{D\left( X \right)}\cdot\sqrt{D\left( Y \right)}}\\&=\frac{E\left( X-EX \right)\left( Y-EY \right)}{\sqrt{D\left( X \right)}\cdot\sqrt{D\left( Y \right)}} \end{aligned} \end{equation}\)
  将两个矩阵看做两个随机变量代入,有
\(\begin{equation} \begin{aligned} Pearson&=\frac{\frac{1}{M\times N}\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-E(A) \right)\left( b_{ij}-E(B) \right)}}}{\sqrt{\frac{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-E(A) \right)^{2}}}}{M\times N}}\cdot\sqrt{\frac{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( b_{ij}-E(B) \right)^{2}}}}{M\times N}}}\\&=\frac{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-E(A) \right)\left( b_{ij}-E(B) \right)}}}{\sqrt{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-E(A) \right)^{2}}}} \sqrt{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( b_{ij}-E(B) \right)^{2}}}}}\\&=NCC \end{aligned} \end{equation}\)

等同于余弦距离
  余弦距离即空间向量夹角的余弦值,通常用以衡量两个向量间的差异度。它的表达式为
\(\begin{equation} \begin{aligned}cos\theta=\frac{<X,Y>}{\left| X \right|\cdot\left| Y \right|}\end{aligned} \end{equation}\)
  将两个矩阵向量去中心化后代入,有
\(\begin{equation} \begin{aligned} cos\theta&=\frac{<A-E(A),B-E(B)>}{\left| A-E(A) \right|\cdot\left| B-E(B) \right|}\\&=\frac{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-E(A) \right)\left( b_{ij}-E(B) \right)}}}{\sqrt{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( a_{ij}-E(A) \right)^{2}}}}\sqrt{\sum_{i=1}^{M}{\sum_{j=1}^{N}{\left( b_{ij}-E(B) \right)^{2}}}}}\\&=NCC \end{aligned} \end{equation}\)

三、matlab实现

(1) SAD

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算SAD矩阵
msad = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        temp = img_A(i:i+r2-1,j:j+c2-1);        
        msad(i,j) = msad(i,j) + sum(sum(abs(temp - img_B)));    
    end
end

%3.定位匹配位置
min_sad = min(min(msad));
[x,y] = find(msad == min_sad);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\SAD_match.bmp');

fprintf('\n Done. \n');
在这里插入代码片

(2) MAD

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算MAD矩阵
mmad = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        temp = img_A(i:i+r2-1,j:j+c2-1);        
        mmad(i,j) = mmad(i,j) + sum(sum(abs(temp - img_B)))/(r2*c2);    
    end
end

%3.定位匹配位置
min_mad = min(min(mmad));
[x,y] = find(mmad == min_mad);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\MAD_match.bmp');

fprintf('\n Done. \n');

(3) SSD

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算SSD矩阵
mssd = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        temp = img_A(i:i+r2-1,j:j+c2-1);        
        mssd(i,j) = mssd(i,j) + sum(sum((temp - img_B).^2));    
    end
end

%3.定位匹配位置
min_ssd = min(min(mssd));
[x,y] = find(mssd == min_ssd);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\SSD_match.bmp');

fprintf('\n Done. \n');

(4) MSD

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算MSD矩阵
mmsd = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        temp = img_A(i:i+r2-1,j:j+c2-1);        
        mmsd(i,j) = mmsd(i,j) + sum(sum((temp - img_B).^2))/(r2*c2);    
    end
end

%3.定位匹配位置
min_msd = min(min(mmsd));
[x,y] = find(mmsd == min_msd);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\MSD_match.bmp');

fprintf('\n Done. \n');

(5) NCC

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算NCC矩阵
mNCC = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        
        temp = img_A(i:i+r2-1,j:j+c2-1);   
        
        mean_temp = mean(temp(:)); %temp均值
        mean_B = mean(img_B(:));  %img_B均值      
        
        inp = sum(sum((temp - mean_temp).*(img_B - mean_B))); %两向量内积        
        mod1 = sqrt(sum(sum((temp - mean_temp).^2))); %模长1
        mod2 = sqrt(sum(sum((img_B - mean_B).^2))); %模长2        
        ncc = inp / (mod1*mod2);       
        
        mNCC(i,j) = mNCC(i,j) + ncc;                             
    end
end


%3.定位匹配位置
max_ncc = max(max(mNCC)); %最大ncc值
[x,y] = find(mNCC == max_ncc);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\NCC_match.bmp');

fprintf('\n Done. \n');


End.

标签:right,匹配,img,准则,sum,对准,raw,end,left
From: https://www.cnblogs.com/flyup/p/17019719.html

相关文章

  • Springboot中通过模糊匹配Redis中的key来删除对应的数据
    Springboot中通过模糊匹配Redis中的key来删除对应的数据在指定情况中,redis中存储的key值为指定前缀+可变的id组成,所以需要批量删除改前缀存储的所有数据,那么由于key的不确......
  • 栈的运用之括号匹配
    LongestRegularBracketSequence(CF5C)洛谷镜像题目大意给出一个括号序列,求出最长合法子串和它的数量。合法的定义:这个序列中左右括号匹配#include<bits/stdc++.h>......
  • KMP字符串模式匹配详解
    KMP字符串模式匹配详解KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法。简单匹配算法的时间复杂度为O(m*n);KMP匹配算法。可以证明它的时间复杂度......
  • 【图像匹配】Superpoint+AslFeat+SIFT
    一、Superpoint1.基本思想2.网络结构 3.参考资料二、AslFeat1.基本思想2.网络结构3.参考资料三、SIFT......
  • leetcode-28找出字符串中第一个匹配项的下标(kmp)
    28.找出字符串中第一个匹配项的下标给你两个字符串haystack和needle,请你在haystack字符串中找出needle字符串的第一个匹配项的下标(下标从0开始)。如果needle不......
  • 自动化定位元素-图像识别获取元素位置:opencv 模板匹配
    背景没有背景我想在当前图片上找到某一块图片(称为模板),然后再根据坐标点击操作模板图片:我期望在下面图片上找到他:opencv模板匹配上代码:importcv2ascvfrommat......
  • Python 强大的模式匹配工具—Pampy
      https://pypi.org/project/pampy/  santinic/pampy:Pampy:ThePatternMatchingforPythonyoualwaysdreamedof.(github.com) Allthethingsyouca......
  • 字符串匹配之 BM 算法
     一、基本概念字符串匹配是计算机科学领域中最古老、研究最广泛的问题之一,层出不穷的前辈们也总结了非常多经典的优秀算法,例如BF算法、RK算法、BM算法、KMP算法,今......
  • 字符串匹配算法之BF算法(即暴力算法)
     BF算法,即暴力(BruteForce)算法,是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和T的第二个......
  • rk字符串匹配算法java实现
      /***rk字符串匹配算法,主要引入了hash的概念,*利用子串的hash值依次对比主串相应长度的子串hash值*并对hash值相同的子串进行匹配对比*/publicclassRKS......