原文链接:http://tecdat.cn/?p=6691
最近我们被客户要求撰写关于神经网络的研究报告,包括一些图形和统计输出。
神经网络一直是迷人的机器学习模型之一,不仅因为花哨的反向传播算法,而且还因为它们的复杂性(考虑到许多隐藏层的深度学习)和受大脑启发的结构
神经网络并不总是流行,部分原因是它们在某些情况下仍然计算成本高昂,部分原因是与支持向量机(SVM)等简单方法相比,它们似乎没有产生更好的结果。然而,最近神经网络变得流行起来。
在这篇文章中,我们将拟合神经网络,并将线性模型作为比较。
数据集
数据集是郊区房屋价格数据的集合。我们的目标是使用所有其他可用的连续变量来预测自住房屋(medv)的中位数。
首先,我们需要检查是否缺少数据点,否则我们需要填充数据集。
apply(data,2,function(x)sum(is.na(x)))
然后我们拟合线性回归模型并在测试集上进行测试。
index < - sample(1:nrow(data),round(0.75 * nrow(data)))
MSE.lm < - sum((pr.lm - test $ medv)^ 2)/ nrow(test)
sample(x,size)
函数简单地从向量输出指定大小的随机选择样本的向量x
。
准备拟合神经网络
在拟合神经网络之前,需要做一些准备工作。神经网络不容易训练和调整。
作为_第一步_,我们将解决数据预处理问题。
因此,我们先划分数据:
maxs < - apply(data,2,max)
scaled < - as.data.frame(scale(data,center = mins,scale = maxs - mins))
train_ < - scaled [index,]
test_ < - scaled [-index,]
请注意,scale
需要转换为data.frame的矩阵。
参数
虽然有几个或多或少可接受的经验法则,但没有固定的规则可以使用多少层和神经元。一般一个隐藏层足以满足大量应用程序的需要。就神经元的数量而言,它应该在输入层大小和输出层大小之间,通常是输入大小的2/3
hidden
参数接受一个包含每个隐藏层的神经元数量的向量,而参数linear.output
用于指定我们要进行回归linear.output=TRUE
或分类linear.output=FALSE
绘制模型:
plot(nn)
这是模型的图形表示,每个连接都有权重:
黑色线条显示每个层与每个连接上的权重之间的连接,而蓝线显示每个步骤中添加的偏差项。偏差可以被认为是线性模型的截距。
使用神经网络预测medv
现在我们可以尝试预测测试集的值并计算MSE。
pr.nn < - compute(nn,test _ [,1:13])
然后我们比较两个MSE。
显然,在预测medv时,网络比线性模型做得更好。但是,这个结果取决于上面执行的训练测试集划分。下面,我们将进行快速交叉验证。
下面绘制了测试集上神经网络和线性模型性能的可视化结果
输出图:
通过检查图,我们可以看到神经网络的预测(通常)在直线周围更加集中(与线完美对齐将表明MSE为0,因此是理想的完美预测)。
下面绘制了模型比较:
交叉验证
交叉验证是构建预测模型的另一个非常重要的步骤。有不同类型的交叉验证方法。
然后通过计算平均误差,我们可以掌握模型。
我们将使用神经网络的for循环和线性模型cv.glm()
的boot
包中的函数来实现快速交叉验证。
据我所知,R中没有内置函数在这种神经网络上进行交叉验证。以下是线性模型的10折交叉验证MSE:
lm.fit < - glm(medv~.,data = data)
我以这种方式划分数据:90%的训练集和10%的测试集,随机方式进行10次。我使用plyr
库初始化进度条,因为神经网络的拟合可能需要一段时间。
过了一会儿,过程完成,我们计算平均MSE并将结果绘制成箱线图:
cv.error
10.32697995
17.640652805 6.310575067 15.769518577 5.730130820 10.520947119 6.121160840
6.389967211 8.004786424 17.369282494 9.412778105
上面的代码输出以下boxplot:
神经网络的平均MSE(10.33)低于线性模型的MSE,尽管交叉验证的MSE似乎存在一定程度的变化。这可能取决于数据的划分或网络中权重的随机初始化。
点击标题查阅往期内容
左右滑动查看更多
01
02
03
04
模型可解释性的说明
神经网络很像黑盒子:解释它们的结果要比解释简单模型(如线性模型)的结果要困难得多。因此,根据您需要解决的应用问题的类型,也要考虑这个因素。此外,需要小心拟合神经网络,小的变化可能导致不同的结果。
非常感谢您阅读本文,有任何问题请在下面留言!
本文摘选 《 R语言实现拟合神经网络预测和结果可视化 》 ,点击“阅读原文”获取全文完整资料。
点击标题查阅往期内容
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析
深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据
用PyTorch机器学习神经网络分类预测银行客户流失模型
PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据
Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化
Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
R语言深度学习:用keras神经网络回归模型预测时间序列数据
Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类
R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
MATLAB中用BP神经网络预测人体脂肪百分比数据
Python中用PyTorch机器学习神经网络分类预测银行客户流失模型
R语言实现CNN(卷积神经网络)模型进行回归数据分析
SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型
【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析
Python使用神经网络进行简单文本分类
R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析
R语言基于递归神经网络RNN的温度时间序列预测
R语言神经网络模型预测车辆数量时间序列
R语言中的BP神经网络模型分析学生成绩
matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
R语言实现拟合神经网络预测和结果可视化
用R语言实现神经网络预测股票实例
使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测
python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译
用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类