首页 > 其他分享 >机器学习--苹果和西红柿分类

机器学习--苹果和西红柿分类

时间:2022-12-24 17:46:03浏览次数:67  
标签:西红柿 plt loss -- self df 苹果 test import

一、选题背景

  苹果和西红柿有着相似的外表和颜色,一个属于蔬菜类,一个属于水果类。在果蔬加工厂中凭借工人的肉眼很难对苹果和西红柿做到又快又准的分类效果。所以,在效率上说,使用计算机对西红柿和苹果进行分类的分类机器能够有效的代替使用肉眼进行分类的工人,对于工厂来说,在节约了工人的劳动力的同时也降低了劳动成本;能够对果蔬进行分类的机器无论是对工人来说还是对工厂来说,都有着不可代替的价值和作用。

二、设计方案

1、 本题采用的机器学习案例的来源描述

本题所采用的案例数据集来源于kaggle的西红柿和苹果的分类项目。

2、 采用的机器学习框架描述

采用了tensorflow以及keras框架。Tensorflow框架是一个基于数据流编程的符号数学系统,被广泛应用于各类机器学习算法的编程实现中,tensorflow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPUTPU高性能的数值计算。keras框架是一个由Python编写的开源人工神经网络库,可以作tensorflow的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用以及可视化任务。

3、 涉及到的技术难点及解决思路

技术难点:如何找到数据集;使用什么技术实现苹果和西红柿的有效分类。

解决思路:借助kaggle的分类任务,找到苹果和西红柿分类的数据集;考虑到苹果与西红柿的分类属于二分类任务,使用tensorflow框架、keras框架来对两者进行分类。

三、实现步骤

获取数据集

 

 

 

 

(1)导入工具包

 

 

 1 import os
 2 import cv2
 3 import time
 4 import shutil
 5 import itertools
 6 import numpy as np
 7 import pandas as pd
 8 import seaborn as sns
 9 import tensorflow as tf
10 sns.set_style('darkgrid')
11 from tensorflow import keras
12 import matplotlib.pyplot as plt
13 from keras import regularizers
14 from keras.optimizers import adam_v2 , Adamax
15 from sklearn.model_selection import train_test_split
16 from keras.metrics import categorical_crossentropy
17 from keras.models import Model, load_model, Sequential
18 from sklearn.metrics import confusion_matrix, classification_report
19 from keras.preprocessing.image import ImageDataGenerator
20 from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout, BatchNormalization
21 
22 print ('modules loaded')

 

(2)数据处理函数

 1 def define_paths(dir):
 2     filepaths = []
 3     labels = []
 4     folds = os.listdir(dir)
 5     for fold in folds:
 6         foldpath = os.path.join(dir, fold)
 7         filelist = os.listdir(foldpath)
 8         for file in filelist:
 9             fpath = os.path.join(foldpath, file)
10             filepaths.append(fpath)
11             labels.append(fold)
12     return filepaths, labels
13 
14 def define_df(files, classes):
15     Fseries = pd.Series(files, name= 'filepaths')
16     Lseries = pd.Series(classes, name='labels')
17     return pd.concat([Fseries, Lseries], axis= 1)
18 
19 def create_df(tr_dir, ts_dir):
20     # train dataframe 
21     files, classes = define_paths(tr_dir)
22     train_df = define_df(files, classes)
23 
24     # test dataframe
25     files, classes = define_paths(ts_dir)
26     test_df = define_df(files, classes)
27     return train_df, test_df

(3)读取数据

 

 

 

 1 def create_gens(train_df, test_df, batch_size):
 2     img_size = (224, 224)
 3     channels = 3
 4     img_shape = (img_size[0], img_size[1], channels)
 5     ts_length = len(test_df)
 6     test_batch_size = test_batch_size = max(sorted([ts_length // n for n in range(1, ts_length + 1) if ts_length%n == 0 and ts_length/n <= 80]))
 7     test_steps = ts_length // test_batch_size
 8     def scalar(img):
 9         return img
10     tr_gen = ImageDataGenerator(preprocessing_function= scalar, horizontal_flip= True)
11     ts_gen = ImageDataGenerator(preprocessing_function= scalar)
12     train_gen = tr_gen.flow_from_dataframe( train_df, x_col= 'filepaths', y_col= 'labels', target_size= img_size, class_mode= 'categorical',
13                                         color_mode= 'rgb', shuffle= True, batch_size= batch_size)
14     
15     test_gen = ts_gen.flow_from_dataframe( test_df, x_col= 'filepaths', y_col= 'labels', target_size= img_size, class_mode= 'categorical',
16                                         color_mode= 'rgb', shuffle= False, batch_size= test_batch_size)
17     return train_gen, test_gen

(4)定义训练过程中的展示函数

 1 def plot_training(hist):
 2     tr_acc = hist.history['accuracy']
 3     tr_loss = hist.history['loss']
 4     val_acc = hist.history['val_accuracy']
 5     val_loss = hist.history['val_loss']
 6     index_loss = np.argmin(val_loss)     # get number of epoch with the lowest validation loss
 7     val_lowest = val_loss[index_loss]    # get the loss value of epoch with the lowest validation loss
 8     index_acc = np.argmax(val_acc)       # get number of epoch with the highest validation accuracy
 9     acc_highest = val_acc[index_acc]     # get the loss value of epoch with the highest validation accuracy
10 
11     plt.figure(figsize= (20, 8))
12     plt.style.use('fivethirtyeight')
13     Epochs = [i+1 for i in range(len(tr_acc))]         # create x-axis by epochs count
14     loss_label = f'best epoch= {str(index_loss + 1)}'  # label of lowest val_loss
15     acc_label = f'best epoch= {str(index_acc + 1)}'    # label of highest val_accuracy
16     plt.subplot(1, 2, 1)
17     plt.plot(Epochs, tr_loss, 'r', label= 'Training loss')
18     plt.plot(Epochs, val_loss, 'g', label= 'Validation loss')
19     plt.scatter(index_loss + 1, val_lowest, s= 150, c= 'blue', label= loss_label)
20     plt.title('Training and Validation Loss')
21     plt.xlabel('Epochs')
22     plt.ylabel('Loss')
23     plt.legend()
24     plt.subplot(1, 2, 2)
25     plt.plot(Epochs, tr_acc, 'r', label= 'Training Accuracy')
26     plt.plot(Epochs, val_acc, 'g', label= 'Validation Accuracy')
27     plt.scatter(index_acc + 1 , acc_highest, s= 150, c= 'blue', label= acc_label)
28     plt.title('Training and Validation Accuracy')
29     plt.xlabel('Epochs')
30     plt.ylabel('Accuracy')
31     plt.legend()
32     plt.tight_layout
33     plt.show()

(5)设置路径并展示部分图片

 1 # Get Dataframes
 2 train_dir = r'train'
 3 test_dir = r'test'
 4 train_df, test_df = create_df(train_dir, test_dir)
 5 
 6 # Get Generators
 7 batch_size = 40
 8 train_gen, test_gen = create_gens(train_df, test_df, batch_size)
 9 
10 show_images(train_gen)
Found 294 validated image filenames belonging to 2 classes.
Found 97 validated image filenames belonging to 2 classes.

  (6)定义超参数,实例化网络模型并打印
 1 img_size = (224, 224)
 2 channels = 3
 3 img_shape = (img_size[0], img_size[1], channels)
 4 class_count = len(list(train_gen.class_indices.keys())) # to define number of classes in dense layer
 5 
 6 # create pre-trained model
 7 base_model = tf.keras.applications.efficientnet.EfficientNetB3(include_top= False, weights= "imagenet", input_shape= img_shape, pooling= 'max')
 8 
 9 model = Sequential([
10     base_model,
11     BatchNormalization(axis= -1, momentum= 0.99, epsilon= 0.001),
12     Dense(256, kernel_regularizer= regularizers.l2(l= 0.016), activity_regularizer= regularizers.l1(0.006),
13                 bias_regularizer= regularizers.l1(0.006), activation= 'relu'),
14     Dropout(rate= 0.45, seed= 123),
15     Dense(class_count, activation= 'softmax')
16 ])
17 
18 model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy'])
19 
20 model.summary()

 

 (7)训练模型,并把训练数据保存到history里

1 history = model.fit(x= train_gen, epochs= epochs, verbose= 0, callbacks= callbacks,
2                     validation_data= test_gen, validation_steps= None, shuffle= False,
3                     initial_epoch= 0)

 

 

 

(8)展示训练过程中的损失值和准确率变化曲线

1 plot_training(history)


(9)计算测试集上的损失值和准确率

 1 ts_length = len(test_df)
 2 test_batch_size = test_batch_size = max(sorted([ts_length // n for n in range(1, ts_length + 1) if ts_length%n == 0 and ts_length/n <= 80]))
 3 test_steps = ts_length // test_batch_size
 4 train_score = model.evaluate(train_gen, steps= test_steps, verbose= 1)
 5 test_score = model.evaluate(test_gen, steps= test_steps, verbose= 1)
 6 
 7 print("Train Loss: ", train_score[0])
 8 print("Train Accuracy: ", train_score[1])
 9 print('-' * 20)
10 print("Test Loss: ", test_score[0])
11 print("Test Accuracy: ", test_score[1])

 

 (10)绘制混淆矩阵

 

1 target_names = ['Apples', 'Tomatoes']
2 # Confusion matrix
3 cm = confusion_matrix(test_gen.classes, y_pred)
4 plot_confusion_matrix(cm= cm, classes= target_names, title = 'Confusion Matrix')
5 # Classification report
6 print(classification_report(test_gen.classes, y_pred, target_names= target_names))

    (11)将结果保存为csv文件
 1 class_dict = train_gen.class_indices
 2 save_path = ''
 3 height = []
 4 width = []
 5 for _ in range(len(class_dict)):
 6     height.append(img_size[0])
 7     width.append(img_size[1])
 8 
 9 Index_series = pd.Series(list(class_dict.values()), name= 'class_index')
10 Class_series = pd.Series(list(class_dict.keys()), name= 'class')
11 Height_series = pd.Series(height, name= 'height')
12 Width_series = pd.Series(width, name= 'width')
13 class_df = pd.concat([Index_series, Class_series, Height_series, Width_series], axis= 1)
14 subject = 'Apples-Tomatoes-Classification'
15 csv_name = f'{subject}-class_dict.csv'
16 csv_save_loc = os.path.join(save_path, csv_name)
17 class_df.to_csv(csv_save_loc, index= False)
18 print(f'class csv file was saved as {csv_save_loc}')

 

四、总结

(1)   机器学习就是按照人类的思维来进行一系列的取舍操作,这次的苹果和西红柿的分类使用的是机器学习中的监督学习,给定数据和标签对数据集进行训练学习,从而找到苹果和西红柿数据之间的不同点,能够让计算机去根据这些数据去识别出属于哪一类。通过这次机器学习过程的实现,我发现利用好机器学习的技术能够大大方便生活以及生产,对社会、经济以及各个方面都有着积极的作用。

(2)   通过这次的实现,我学习到了很多知识点,让我了解到了机器学习与深度学习之间的密切关系,同时还学习到了高效利用机器学习对人类社会的发展有着极其重要的作用。

 

以下附上完整代码

  1 import os
  2 import cv2
  3 import time
  4 import shutil
  5 import itertools
  6 import numpy as np
  7 import pandas as pd
  8 import seaborn as sns
  9 import tensorflow as tf
 10 sns.set_style('darkgrid')
 11 from tensorflow import keras
 12 import matplotlib.pyplot as plt
 13 from keras import regularizers
 14 from keras.optimizers import adam_v2 , Adamax
 15 from sklearn.model_selection import train_test_split
 16 from keras.metrics import categorical_crossentropy
 17 from keras.models import Model, load_model, Sequential
 18 from sklearn.metrics import confusion_matrix, classification_report
 19 from keras.preprocessing.image import ImageDataGenerator
 20 from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout, BatchNormalization
 21 
 22 print ('modules loaded111')
 23 
 24 
 25 def define_paths(dir):
 26     filepaths = []
 27     labels = []
 28     folds = os.listdir(dir)
 29     for fold in folds:
 30         foldpath = os.path.join(dir, fold)
 31         filelist = os.listdir(foldpath)
 32         for file in filelist:
 33             fpath = os.path.join(foldpath, file)
 34             filepaths.append(fpath)
 35             labels.append(fold)
 36     return filepaths, labels
 37 
 38 def define_df(files, classes):
 39     Fseries = pd.Series(files, name= 'filepaths')
 40     Lseries = pd.Series(classes, name='labels')
 41     return pd.concat([Fseries, Lseries], axis= 1)
 42 
 43 def create_df(tr_dir, ts_dir):
 44     # train dataframe 
 45     files, classes = define_paths(tr_dir)
 46     train_df = define_df(files, classes)
 47 
 48     # test dataframe
 49     files, classes = define_paths(ts_dir)
 50     test_df = define_df(files, classes)
 51     return train_df, test_df
 52 
 53 
 54 def create_gens(train_df, test_df, batch_size):
 55     img_size = (224, 224)
 56     channels = 3
 57     img_shape = (img_size[0], img_size[1], channels)
 58     ts_length = len(test_df)
 59     test_batch_size = test_batch_size = max(sorted([ts_length // n for n in range(1, ts_length + 1) if ts_length%n == 0 and ts_length/n <= 80]))
 60     test_steps = ts_length // test_batch_size
 61     def scalar(img):
 62         return img
 63     tr_gen = ImageDataGenerator(preprocessing_function= scalar, horizontal_flip= True)
 64     ts_gen = ImageDataGenerator(preprocessing_function= scalar)
 65     train_gen = tr_gen.flow_from_dataframe( train_df, x_col= 'filepaths', y_col= 'labels', target_size= img_size, class_mode= 'categorical',
 66                                         color_mode= 'rgb', shuffle= True, batch_size= batch_size)
 67     
 68     test_gen = ts_gen.flow_from_dataframe( test_df, x_col= 'filepaths', y_col= 'labels', target_size= img_size, class_mode= 'categorical',
 69                                         color_mode= 'rgb', shuffle= False, batch_size= test_batch_size)
 70     return train_gen, test_gen
 71 
 72 
 73 def show_images(gen):
 74     g_dict = gen.class_indices        # defines dictionary {'class': index}
 75     classes = list(g_dict.keys())     # defines list of dictionary's kays (classes)
 76     images, labels = next(gen)        # get a batch size samples from the generator
 77     plt.figure(figsize= (20, 20))
 78     length = len(labels)              # length of batch size
 79     sample = min(length, 25)          # check if sample less than 25 images
 80     for i in range(sample):
 81         plt.subplot(5, 5, i + 1)
 82         image = images[i] / 255       # scales data to range (0 - 255)
 83         plt.imshow(image)
 84         index = np.argmax(labels[i])  # get image index
 85         class_name = classes[index]   # get class of image
 86         plt.title(class_name, color= 'blue', fontsize= 12)
 87         plt.axis('off')
 88     plt.show()
 89 
 90 
 91 
 92 ### Define a class for custom callback
 93 class MyCallback(keras.callbacks.Callback):
 94     def __init__(self, model, base_model, patience, stop_patience, threshold, factor, batches, initial_epoch, epochs):
 95         super(MyCallback, self).__init__()
 96         self.model = model
 97         self.base_model = base_model
 98         self.patience = patience # specifies how many epochs without improvement before learning rate is adjusted
 99         self.stop_patience = stop_patience # specifies how many times to adjust lr without improvement to stop training
100         self.threshold = threshold # specifies training accuracy threshold when lr will be adjusted based on validation loss
101         self.factor = factor # factor by which to reduce the learning rate
102         self.batches = batches # number of training batch to runn per epoch
103         self.initial_epoch = initial_epoch
104         self.epochs = epochs
105         # callback variables
106         self.count = 0 # how many times lr has been reduced without improvement
107         self.stop_count = 0
108         self.best_epoch = 1   # epoch with the lowest loss
109         self.initial_lr = float(tf.keras.backend.get_value(model.optimizer.lr)) # get the initial learning rate and save it
110         self.highest_tracc = 0.0 # set highest training accuracy to 0 initially
111         self.lowest_vloss = np.inf # set lowest validation loss to infinity initially
112         self.best_weights = self.model.get_weights() # set best weights to model's initial weights
113         self.initial_weights = self.model.get_weights()   # save initial weights if they have to get restored
114 
115     # Define a function that will run when train begins
116     def on_train_begin(self, logs= None):
117         msg = '{0:^8s}{1:^10s}{2:^9s}{3:^9s}{4:^9s}{5:^9s}{6:^9s}{7:^10s}{8:10s}{9:^8s}'.format('Epoch', 'Loss', 'Accuracy', 'V_loss', 'V_acc', 'LR', 'Next LR', 'Monitor','% Improv', 'Duration')
118         print(msg)
119         self.start_time = time.time()
120 
121     def on_train_end(self, logs= None):
122         stop_time = time.time()
123         tr_duration = stop_time - self.start_time
124         hours = tr_duration // 3600
125         minutes = (tr_duration - (hours * 3600)) // 60
126         seconds = tr_duration - ((hours * 3600) + (minutes * 60))
127         msg = f'training elapsed time was {str(hours)} hours, {minutes:4.1f} minutes, {seconds:4.2f} seconds)'
128         print(msg)
129         self.model.set_weights(self.best_weights) # set the weights of the model to the best weights
130 
131     def on_train_batch_end(self, batch, logs= None):
132         acc = logs.get('accuracy') * 100 # get batch accuracy
133         loss = logs.get('loss')
134         msg = '{0:20s}processing batch {1:} of {2:5s}-   accuracy=  {3:5.3f}   -   loss: {4:8.5f}'.format(' ', str(batch), str(self.batches), acc, loss)
135         print(msg, '\r', end= '') # prints over on the same line to show running batch count
136 
137     def on_epoch_begin(self, epoch, logs= None):
138         self.ep_start = time.time()
139 
140     # Define method runs on the end of each epoch
141     def on_epoch_end(self, epoch, logs= None):
142         ep_end = time.time()
143         duration = ep_end - self.ep_start
144 
145         lr = float(tf.keras.backend.get_value(self.model.optimizer.lr)) # get the current learning rate
146         current_lr = lr
147         acc = logs.get('accuracy')  # get training accuracy
148         v_acc = logs.get('val_accuracy')  # get validation accuracy
149         loss = logs.get('loss')  # get training loss for this epoch
150         v_loss = logs.get('val_loss')  # get the validation loss for this epoch
151 
152         if acc < self.threshold: # if training accuracy is below threshold adjust lr based on training accuracy
153             monitor = 'accuracy'
154             if epoch == 0:
155                 pimprov = 0.0
156             else:
157                 pimprov = (acc - self.highest_tracc ) * 100 / self.highest_tracc # define improvement of model progres
158 
159             if acc > self.highest_tracc: # training accuracy improved in the epoch
160                 self.highest_tracc = acc # set new highest training accuracy
161                 self.best_weights = self.model.get_weights() # training accuracy improved so save the weights
162                 self.count = 0 # set count to 0 since training accuracy improved
163                 self.stop_count = 0 # set stop counter to 0
164                 if v_loss < self.lowest_vloss:
165                     self.lowest_vloss = v_loss
166                 self.best_epoch = epoch + 1  # set the value of best epoch for this epoch
167 
168             else:
169                 # training accuracy did not improve check if this has happened for patience number of epochs
170                 # if so adjust learning rate
171                 if self.count >= self.patience - 1: # lr should be adjusted
172                     lr = lr * self.factor # adjust the learning by factor
173                     tf.keras.backend.set_value(self.model.optimizer.lr, lr) # set the learning rate in the optimizer
174                     self.count = 0 # reset the count to 0
175                     self.stop_count = self.stop_count + 1 # count the number of consecutive lr adjustments
176                     self.count = 0 # reset counter
177                     if v_loss < self.lowest_vloss:
178                         self.lowest_vloss = v_loss
179                 else:
180                     self.count = self.count + 1 # increment patience counter
181 
182         else: # training accuracy is above threshold so adjust learning rate based on validation loss
183             monitor = 'val_loss'
184             if epoch == 0:
185                 pimprov = 0.0
186             else:
187                 pimprov = (self.lowest_vloss - v_loss ) * 100 / self.lowest_vloss
188             if v_loss < self.lowest_vloss: # check if the validation loss improved
189                 self.lowest_vloss = v_loss # replace lowest validation loss with new validation loss
190                 self.best_weights = self.model.get_weights() # validation loss improved so save the weights
191                 self.count = 0 # reset count since validation loss improved
192                 self.stop_count = 0
193                 self.best_epoch = epoch + 1 # set the value of the best epoch to this epoch
194             else: # validation loss did not improve
195                 if self.count >= self.patience - 1: # need to adjust lr
196                     lr = lr * self.factor # adjust the learning rate
197                     self.stop_count = self.stop_count + 1 # increment stop counter because lr was adjusted
198                     self.count = 0 # reset counter
199                     tf.keras.backend.set_value(self.model.optimizer.lr, lr) # set the learning rate in the optimizer
200                 else:
201                     self.count = self.count + 1 # increment the patience counter
202                 if acc > self.highest_tracc:
203                     self.highest_tracc = acc
204 
205         msg = f'{str(epoch + 1):^3s}/{str(self.epochs):4s} {loss:^9.3f}{acc * 100:^9.3f}{v_loss:^9.5f}{v_acc * 100:^9.3f}{current_lr:^9.5f}{lr:^9.5f}{monitor:^11s}{pimprov:^10.2f}{duration:^8.2f}'
206         print(msg)
207 
208         if self.stop_count > self.stop_patience - 1: # check if learning rate has been adjusted stop_count times with no improvement
209             msg = f' training has been halted at epoch {epoch + 1} after {self.stop_patience} adjustments of learning rate with no improvement'
210             print(msg)
211             self.model.stop_training = True # stop training
212 
213 
214 def plot_training(hist):
215     tr_acc = hist.history['accuracy']
216     tr_loss = hist.history['loss']
217     val_acc = hist.history['val_accuracy']
218     val_loss = hist.history['val_loss']
219     index_loss = np.argmin(val_loss)     # get number of epoch with the lowest validation loss
220     val_lowest = val_loss[index_loss]    # get the loss value of epoch with the lowest validation loss
221     index_acc = np.argmax(val_acc)       # get number of epoch with the highest validation accuracy
222     acc_highest = val_acc[index_acc]     # get the loss value of epoch with the highest validation accuracy
223 
224     plt.figure(figsize= (20, 8))
225     plt.style.use('fivethirtyeight')
226     Epochs = [i+1 for i in range(len(tr_acc))]           # create x-axis by epochs count
227     loss_label = f'best epoch= {str(index_loss + 1)}'  # label of lowest val_loss
228     acc_label = f'best epoch= {str(index_acc + 1)}'    # label of highest val_accuracy
229     plt.subplot(1, 2, 1)
230     plt.plot(Epochs, tr_loss, 'r', label= 'Training loss')
231     plt.plot(Epochs, val_loss, 'g', label= 'Validation loss')
232     plt.scatter(index_loss + 1, val_lowest, s= 150, c= 'blue', label= loss_label)
233     plt.title('Training and Validation Loss')
234     plt.xlabel('Epochs')
235     plt.ylabel('Loss')
236     plt.legend()
237     plt.subplot(1, 2, 2)
238     plt.plot(Epochs, tr_acc, 'r', label= 'Training Accuracy')
239     plt.plot(Epochs, val_acc, 'g', label= 'Validation Accuracy')
240     plt.scatter(index_acc + 1 , acc_highest, s= 150, c= 'blue', label= acc_label)
241     plt.title('Training and Validation Accuracy')
242     plt.xlabel('Epochs')
243     plt.ylabel('Accuracy')
244     plt.legend()
245     plt.tight_layout
246     plt.show()
247 
248 
249 
250 def plot_confusion_matrix(cm, classes, normalize= False, title= 'Confusion Matrix', cmap= plt.cm.Blues):
251     plt.figure(figsize= (10, 10))
252     plt.imshow(cm, interpolation= 'nearest', cmap= cmap)
253     plt.title(title)
254     plt.colorbar()
255     tick_marks = np.arange(len(classes))
256     plt.xticks(tick_marks, classes, rotation= 45)
257     plt.yticks(tick_marks, classes)
258     if normalize:
259         cm = cm.astype('float') / cm.sum(axis= 1)[:, np.newaxis]
260         print('Normalized Confusion Matrix')
261     else:
262         print('Confusion Matrix, Without Normalization')
263     print(cm)
264     thresh = cm.max() / 2.
265     for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
266         plt.text(j, i, cm[i, j], horizontalalignment= 'center', color= 'white' if cm[i, j] > thresh else 'black')
267     plt.tight_layout()
268     plt.ylabel('True Label')
269     plt.xlabel('Predicted Label')
270 
271 
272 # Get Dataframes
273 train_dir = r'train'
274 test_dir = r'test'
275 train_df, test_df = create_df(train_dir, test_dir)
276 
277 # Get Generators
278 batch_size = 40
279 train_gen, test_gen = create_gens(train_df, test_df, batch_size)
280 
281 show_images(train_gen)
282 
283 # Create Model Structure
284 img_size = (224, 224)
285 channels = 3
286 img_shape = (img_size[0], img_size[1], channels)
287 class_count = len(list(train_gen.class_indices.keys())) # to define number of classes in dense layer
288 
289 # create pre-trained model
290 base_model = tf.keras.applications.efficientnet.EfficientNetB3(include_top= False, weights= "imagenet", input_shape= img_shape, pooling= 'max')
291 
292 model = Sequential([
293     base_model,
294     BatchNormalization(axis= -1, momentum= 0.99, epsilon= 0.001),
295     Dense(256, kernel_regularizer= regularizers.l2(l= 0.016), activity_regularizer= regularizers.l1(0.006),
296                 bias_regularizer= regularizers.l1(0.006), activation= 'relu'),
297     Dropout(rate= 0.45, seed= 123),
298     Dense(class_count, activation= 'softmax')
299 ])
300 
301 model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy'])
302 
303 model.summary()
304 
305 
306 batch_size = 40
307 epochs = 40
308 patience = 1         # number of epochs to wait to adjust lr if monitored value does not improve
309 stop_patience = 3     # number of epochs to wait before stopping training if monitored value does not improve
310 threshold = 0.9     # if train accuracy is < threshold adjust monitor accuracy, else monitor validation loss
311 factor = 0.5         # factor to reduce lr by
312 freeze = False         # if true free weights of  the base model
313 batches = int(np.ceil(len(train_gen.labels) / batch_size))
314 
315 callbacks = [MyCallback(model= model, base_model= base_model, patience= patience,
316             stop_patience= stop_patience, threshold= threshold, factor= factor,
317             batches= batches, initial_epoch= 0, epochs= epochs)]
318 
319 
320 
321 history = model.fit(x= train_gen, epochs= epochs, verbose= 0, callbacks= callbacks,
322                     validation_data= test_gen, validation_steps= None, shuffle= False,
323                     initial_epoch= 0)
324 
325 
326 plot_training(history)
327 
328 
329 ts_length = len(test_df)
330 test_batch_size = test_batch_size = max(sorted([ts_length // n for n in range(1, ts_length + 1) if ts_length%n == 0 and ts_length/n <= 80]))
331 test_steps = ts_length // test_batch_size
332 train_score = model.evaluate(train_gen, steps= test_steps, verbose= 1)
333 test_score = model.evaluate(test_gen, steps= test_steps, verbose= 1)
334 
335 print("Train Loss: ", train_score[0])
336 print("Train Accuracy: ", train_score[1])
337 print('-' * 20)
338 print("Test Loss: ", test_score[0])
339 print("Test Accuracy: ", test_score[1])
340 
341 
342 preds = model.predict_generator(test_gen)
343 y_pred = np.argmax(preds, axis=1)
344 
345 
346 target_names = ['Apples', 'Tomatoes']
347 # Confusion matrix
348 cm = confusion_matrix(test_gen.classes, y_pred)
349 plot_confusion_matrix(cm= cm, classes= target_names, title = 'Confusion Matrix')
350 # Classification report
351 print(classification_report(test_gen.classes, y_pred, target_names= target_names))
352 
353 
354 class_dict = train_gen.class_indices
355 save_path = ''
356 height = []
357 width = []
358 for _ in range(len(class_dict)):
359     height.append(img_size[0])
360     width.append(img_size[1])
361 
362 Index_series = pd.Series(list(class_dict.values()), name= 'class_index')
363 Class_series = pd.Series(list(class_dict.keys()), name= 'class')
364 Height_series = pd.Series(height, name= 'height')
365 Width_series = pd.Series(width, name= 'width')
366 class_df = pd.concat([Index_series, Class_series, Height_series, Width_series], axis= 1)
367 subject = 'Apples-Tomatoes-Classification'
368 csv_name = f'{subject}-class_dict.csv'
369 csv_save_loc = os.path.join(save_path, csv_name)
370 class_df.to_csv(csv_save_loc, index= False)
371 print(f'class csv file was saved as {csv_save_loc}')

 

标签:西红柿,plt,loss,--,self,df,苹果,test,import
From: https://www.cnblogs.com/tuyang11/p/17003048.html

相关文章