首页 > 其他分享 >机器学习——对吸烟动作进行简单分类

机器学习——对吸烟动作进行简单分类

时间:2022-12-24 17:34:00浏览次数:45  
标签:torch 机器 self 分类 lr 吸烟 path model image

(一)选题背景:

本来比较讨厌吸烟这种危害健康的行为。

本次课程设计选择识别行人是否抽烟,该任务可以应用在一些禁止吸烟的地方,以达到对人群进行检测的目的。

 

(二)机器学习设计案例设计方案:

1.本选题采用的机器学习案例(训练集与测试集)的来源描述

该数据集来自阿里云天池

2 采用的机器学习框架描述

采用MobileNetV2轻量级网络作为backbone网络。MobileNetV2是一个轻量级的网络,在该网络的设计中使用了Expansion layer和 Projection layer。这个projection layer使用 1*1 的网络结构,目的是希望把高维特征映射到低维空间去。Expansion layer的功能正相反,使用 1*1 的网络结构,目的是将低维空间映射到高维空间。Expansion有一个超参数是维度扩展几倍。可以根据实际情况来做调整的,默认值是6,也就是扩展6倍。整个模块的结构如图1所示。

 

图1 MobileNetV2模块结构图

图中输入是24维,最后输出也是24维。但这个过程中,通道数扩展了6倍,然后应用深度可分离卷积进行处理。整个网络是中间胖,两头窄,像一个纺锤形。bottleneck residual block(ResNet论文中的)是中间窄两头胖,在MobileNetV2中正好反了过来,所以,在MobileNetV2的论文中称这样的网络结构为Inverted residuals。需要注意的是residual connection是在输入和输出的部分进行连接。因为从高维向低维转换,使用ReLU激活函数可能会造成信息丢失或破坏(不使用非线性激活数数)。所以在projection convolution这一部分,不再使用ReLU激活函数而是使用线性激活函数。

先通过Expansion layer来扩展维度,之后在用深度可分离卷积来提取特征,之后使用Projection layer来压缩数据,让网络从新变小。因为Expansion layer 和 Projection layer都是有可以学习的参数,所以整个网络结构可以学习到如何更好的扩展数据和从新压缩数据。

(三)机器学习的实现步骤

 下载的数据集

 

(1)生成数据集信息

import os
from os import getcwd

from utils.utils import get_classes

classes_path    = 'model_data/cls_classes.txt'

datasets_path   = 'datasets'

sets            = ["train", "test"]
classes, _      = get_classes(classes_path)

if __name__ == "__main__":
    for se in sets:
        list_file = open('cls_' + se + '.txt', 'w')

        datasets_path_t = os.path.join(datasets_path, se)
        types_name      = os.listdir(datasets_path_t)
        for type_name in types_name:
            if type_name not in classes:
                continue
            cls_id = classes.index(type_name)
            
            photos_path = os.path.join(datasets_path_t, type_name)
            photos_name = os.listdir(photos_path)
            for photo_name in photos_name:
                _, postfix = os.path.splitext(photo_name)
                if postfix not in ['.jpg', '.png', '.jpeg']:
                    continue
                list_file.write(str(cls_id) + ";" + '%s'%(os.path.join(photos_path, photo_name)))
                list_file.write('\n')
        list_file.close()

 

  

 

 

 

(2)数据增强

数据增强也叫数据扩增,意思是在不实质性的增加数据的情况下,让有限的数据产生等价于更多数据的价值。数据增强可以分为,有监督的数据增强和无监督的数据增强方法。其中有监督的数据增强又可以分为单样本数据增强和多样本数据增强方法,无监督的数据增强分为生成新的数据和学习增强策略两个方向。

由于数据集的数据量比较大,仅使用随即裁剪、翻转图像等简单的数据增强方式,为了节省磁盘空间,使用在线数据增强,即数据增强后的数据直接喂入网络进行训练,不保留在本地。

代码实现:

def AutoAugment(self, image, random=True):
        if not random:
            image = self.resize(image)
            image = self.center_crop(image)
            return image

        #------------------------------------------#
        #   resize并且随即裁剪
        #------------------------------------------#
        image = self.resize_crop(image)
        
        #------------------------------------------#
        #   翻转图像
        #------------------------------------------#
        flip = self.rand()<.5
        if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)
        
        #------------------------------------------#
        #   随机增强
        #------------------------------------------#
        image = self.policy(image)
        return image

def center_crop(img, output_size):
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
    w, h = img.size
    th, tw = output_size
    i = int(round((h - th) / 2.))
    j = int(round((w - tw) / 2.))
    return crop(img, i, j, th, tw)

class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
        interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
        self.size = size
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

        self.interpolation = interpolation
        self.scale = scale
        self.ratio = ratio

    @staticmethod
    def get_params(img, scale, ratio):
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        area = img.size[0] * img.size[1]

        for attempt in range(10):
            target_area = random.uniform(*scale) * area
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if w <= img.size[0] and h <= img.size[1]:
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

        # Fallback to central crop
        in_ratio = img.size[0] / img.size[1]
        if (in_ratio < min(ratio)):
            w = img.size[0]
            h = int(round(w / min(ratio)))
        elif (in_ratio > max(ratio)):
            h = img.size[1]
            w = int(round(h * max(ratio)))
        else:  # whole image
            w = img.size[0]
            h = img.size[1]
        i = (img.size[1] - h) // 2
        j = (img.size[0] - w) // 2
        return i, j, h, w

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Randomly cropped and resized image.
        """
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
        return resized_crop(img, i, j, h, w, self.size, self.interpolation)

  (3)显示网络结构

import torch
from thop import clever_format, profile
from torchsummary import summary

from nets import get_model_from_name

if __name__ == "__main__":
    input_shape = [224, 224]
    num_classes = 1000
    backbone    = "mobilenetv2"
    
    device  = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model   = get_model_from_name[backbone](num_classes=num_classes, pretrained=False).to(device)
    
    summary(model, (3, input_shape[0], input_shape[1]))

    dummy_input     = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device)
    flops, params   = profile(model.to(device), (dummy_input, ), verbose=False)

    flops           = flops * 2
    flops, params   = clever_format([flops, params], "%.3f")
    print('Total GFLOPS: %s' % (flops))
    print('Total params: %s' % (params))

 

  

 

(3)训练实现流程

首先设置一些训练中需要用到的参数,如是否使用GPU,是否用多张卡进行训练,骨干网络,是否使用预训练,epoch,batch_size、学习率、优化器、学习率下降策略等参数。

在开始训练前,首先使用DataLoader函数读取训练集和验证集,然后对构造的网络结构进行实例化,然后对模型进行训练。训练时每一轮都需要先清零梯度,然后进行前向传播,计算损失,计算准确率,最后保存权重文件。

代码如下:

import os
from threading import local

import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm

from .utils import get_lr

def fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, cuda, fp16, scaler, save_period, save_dir, local_rank=0):
    total_loss      = 0
    total_accuracy  = 0

    val_loss        = 0
    val_accuracy    = 0

    if local_rank == 0:
        print('Start Train')
        pbar = tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
    model_train.train()
    for iteration, batch in enumerate(gen):
        if iteration >= epoch_step: 
            break
        images, targets = batch
        with torch.no_grad():
            if cuda:
                images  = images.cuda(local_rank)
                targets = targets.cuda(local_rank)
                
        optimizer.zero_grad()
        if not fp16:
            outputs     = model_train(images)
            loss_value  = nn.CrossEntropyLoss()(outputs, targets)
            loss_value.backward()
            optimizer.step()
        else:
            from torch.cuda.amp import autocast
            with autocast():
                outputs     = model_train(images)
                loss_value  = nn.CrossEntropyLoss()(outputs, targets)
            scaler.scale(loss_value).backward()
            scaler.step(optimizer)
            scaler.update()

        total_loss += loss_value.item()
        with torch.no_grad():
            accuracy = torch.mean((torch.argmax(F.softmax(outputs, dim=-1), dim=-1) == targets).type(torch.FloatTensor))
            total_accuracy += accuracy.item()

        if local_rank == 0:
            pbar.set_postfix(**{'total_loss': total_loss / (iteration + 1), 
                                'accuracy'  : total_accuracy / (iteration + 1), 
                                'lr'        : get_lr(optimizer)})
            pbar.update(1)

    if local_rank == 0:
        pbar.close()
        print('Finish Train')
        print('Start Validation')
        pbar = tqdm(total=epoch_step_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
    model_train.eval()
    for iteration, batch in enumerate(gen_val):
        if iteration >= epoch_step_val:
            break
        images, targets = batch
        with torch.no_grad():
            if cuda:
                images  = images.cuda(local_rank)
                targets = targets.cuda(local_rank)

            optimizer.zero_grad()

            outputs     = model_train(images)
            loss_value  = nn.CrossEntropyLoss()(outputs, targets)
            
            val_loss    += loss_value.item()
            accuracy        = torch.mean((torch.argmax(F.softmax(outputs, dim=-1), dim=-1) == targets).type(torch.FloatTensor))
            val_accuracy    += accuracy.item()
            
        if local_rank == 0:
            pbar.set_postfix(**{'total_loss': val_loss / (iteration + 1),
                                'accuracy'  : val_accuracy / (iteration + 1), 
                                'lr'        : get_lr(optimizer)})
            pbar.update(1)
                
    if local_rank == 0:
        pbar.close()
        print('Finish Validation')
        loss_history.append_loss(epoch + 1, total_loss / epoch_step, val_loss / epoch_step_val)
        print('Epoch:' + str(epoch + 1) + '/' + str(Epoch))
        print('Total Loss: %.3f || Val Loss: %.3f ' % (total_loss / epoch_step, val_loss / epoch_step_val))
        
        if (epoch + 1) % save_period == 0 or epoch + 1 == Epoch:
            torch.save(model.state_dict(), os.path.join(save_dir, "ep%03d-loss%.3f-val_loss%.3f.pth" % (epoch + 1, total_loss / epoch_step, val_loss / epoch_step_val)))

        if len(loss_history.val_loss) <= 1 or (val_loss / epoch_step_val) <= min(loss_history.val_loss):
            print('Save best model to best_epoch_weights.pth')
            torch.save(model.state_dict(), os.path.join(save_dir, "best_epoch_weights.pth"))
            
        torch.save(model.state_dict(), os.path.join(save_dir, "last_epoch_weights.pth"))

import os

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader

from nets import get_model_from_name
from utils.callbacks import LossHistory
from utils.dataloader import DataGenerator, detection_collate
from utils.utils import (download_weights, get_classes, get_lr_scheduler,
                         set_optimizer_lr, show_config, weights_init)
from utils.utils_fit import fit_one_epoch

if __name__ == "__main__":
    Cuda            = True
    distributed     = False
    sync_bn         = False
    fp16            = False
    classes_path    = 'model_data/cls_classes.txt' 
    input_shape     = [224, 224]
    backbone        = "vgg16"
    pretrained      = True
    model_path      = ""
    Init_Epoch          = 0
    Freeze_Epoch        = 50
    Freeze_batch_size   = 32
    UnFreeze_Epoch      = 200
    Unfreeze_batch_size = 32
    Freeze_Train        = True
    Init_lr             = 1e-2
    Min_lr              = Init_lr * 0.01
    optimizer_type      = "sgd"
    momentum            = 0.9
    weight_decay        = 5e-4
    lr_decay_type       = "cos"
    save_period         = 10
    save_dir            = 'logs'
    num_workers         = 4

    train_annotation_path   = "cls_train.txt"
    test_annotation_path    = 'cls_test.txt'

    ngpus_per_node  = torch.cuda.device_count()
    if distributed:
        dist.init_process_group(backend="nccl")
        local_rank  = int(os.environ["LOCAL_RANK"])
        rank        = int(os.environ["RANK"])
        device      = torch.device("cuda", local_rank)
        if local_rank == 0:
            print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...")
            print("Gpu Device Count : ", ngpus_per_node)
    else:
        device          = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        local_rank      = 0
        rank            = 0

    if pretrained:
        if distributed:
            if local_rank == 0:
                download_weights(backbone)  
            dist.barrier()
        else:
            download_weights(backbone)

    class_names, num_classes = get_classes(classes_path)

    if backbone not in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:
        model = get_model_from_name[backbone](num_classes = num_classes, pretrained = pretrained)
    else:
        model = get_model_from_name[backbone](input_shape = input_shape, num_classes = num_classes, pretrained = pretrained)

    if not pretrained:
        weights_init(model)
    if model_path != "":
        if local_rank == 0:
            print('Load weights {}.'.format(model_path))
        model_dict      = model.state_dict()
        pretrained_dict = torch.load(model_path, map_location = device)
        load_key, no_load_key, temp_dict = [], [], {}
        for k, v in pretrained_dict.items():
            if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
                temp_dict[k] = v
                load_key.append(k)
            else:
                no_load_key.append(k)
        model_dict.update(temp_dict)
        model.load_state_dict(model_dict)
        if local_rank == 0:
            print("\nSuccessful Load Key:", str(load_key)[:500], "……\nSuccessful Load Key Num:", len(load_key))
            print("\nFail To Load Key:", str(no_load_key)[:500], "……\nFail To Load Key num:", len(no_load_key))
            print("\n\033[1;33;44m温馨提示,head部分没有载入是正常现象,Backbone部分没有载入是错误的。\033[0m")

    if local_rank == 0:
        loss_history = LossHistory(save_dir, model, input_shape=input_shape)
    else:
        loss_history = None
        
    if fp16:
        from torch.cuda.amp import GradScaler as GradScaler
        scaler = GradScaler()
    else:
        scaler = None

    model_train     = model.train()
    if sync_bn and ngpus_per_node > 1 and distributed:
        model_train = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model_train)
    elif sync_bn:
        print("Sync_bn is not support in one gpu or not distributed.")

    if Cuda:
        if distributed:
            #----------------------------#
            #   多卡平行运行
            #----------------------------#
            model_train = model_train.cuda(local_rank)
            model_train = torch.nn.parallel.DistributedDataParallel(model_train, device_ids=[local_rank], find_unused_parameters=True)
        else:
            model_train = torch.nn.DataParallel(model)
            cudnn.benchmark = True
            model_train = model_train.cuda()
        
    with open(train_annotation_path, encoding='utf-8') as f:
        train_lines = f.readlines()
    with open(test_annotation_path, encoding='utf-8') as f:
        val_lines   = f.readlines()
    num_train   = len(train_lines)
    num_val     = len(val_lines)
    np.random.seed(10101)
    np.random.shuffle(train_lines)
    np.random.seed(None)
    
    if local_rank == 0:
        show_config(
            num_classes = num_classes, backbone = backbone, model_path = model_path, input_shape = input_shape, \
            Init_Epoch = Init_Epoch, Freeze_Epoch = Freeze_Epoch, UnFreeze_Epoch = UnFreeze_Epoch, Freeze_batch_size = Freeze_batch_size, Unfreeze_batch_size = Unfreeze_batch_size, Freeze_Train = Freeze_Train, \
            Init_lr = Init_lr, Min_lr = Min_lr, optimizer_type = optimizer_type, momentum = momentum, lr_decay_type = lr_decay_type, \
            save_period = save_period, save_dir = save_dir, num_workers = num_workers, num_train = num_train, num_val = num_val
        )
    wanted_step = 3e4 if optimizer_type == "sgd" else 1e4
    total_step  = num_train // Unfreeze_batch_size * UnFreeze_Epoch
    if total_step <= wanted_step:
        wanted_epoch = wanted_step // (num_train // Unfreeze_batch_size) + 1
        print("\n\033[1;33;44m[Warning] 使用%s优化器时,建议将训练总步长设置到%d以上。\033[0m"%(optimizer_type, wanted_step))
        print("\033[1;33;44m[Warning] 本次运行的总训练数据量为%d,Unfreeze_batch_size为%d,共训练%d个Epoch,计算出总训练步长为%d。\033[0m"%(num_train, Unfreeze_batch_size, UnFreeze_Epoch, total_step))
        print("\033[1;33;44m[Warning] 由于总训练步长为%d,小于建议总步长%d,建议设置总世代为%d。\033[0m"%(total_step, wanted_step, wanted_epoch))

    if True:
        UnFreeze_flag = False
        if Freeze_Train:
            model.freeze_backbone()
        batch_size = Freeze_batch_size if Freeze_Train else Unfreeze_batch_size

        nbs             = 64
        lr_limit_max    = 1e-3 if optimizer_type == 'adam' else 1e-1
        lr_limit_min    = 1e-4 if optimizer_type == 'adam' else 5e-4
        if backbone in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:
            nbs             = 256
            lr_limit_max    = 1e-3 if optimizer_type == 'adam' else 1e-1
            lr_limit_min    = 1e-5 if optimizer_type == 'adam' else 5e-4
        Init_lr_fit     = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)
        Min_lr_fit      = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)
        
        optimizer = {
            'adam'  : optim.Adam(model_train.parameters(), Init_lr_fit, betas = (momentum, 0.999), weight_decay=weight_decay),
            'sgd'   : optim.SGD(model_train.parameters(), Init_lr_fit, momentum = momentum, nesterov=True)
        }[optimizer_type]
        
        lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
        
        epoch_step      = num_train // batch_size
        epoch_step_val  = num_val // batch_size
        
        if epoch_step == 0 or epoch_step_val == 0:
            raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")

        train_dataset   = DataGenerator(train_lines, input_shape, True)
        val_dataset     = DataGenerator(val_lines, input_shape, False)
        
        if distributed:
            train_sampler   = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True,)
            val_sampler     = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False,)
            batch_size      = batch_size // ngpus_per_node
            shuffle         = False
        else:
            train_sampler   = None
            val_sampler     = None
            shuffle         = True
            
        gen             = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, 
                                drop_last=True, collate_fn=detection_collate, sampler=train_sampler)
        gen_val         = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
                                drop_last=True, collate_fn=detection_collate, sampler=val_sampler)
        for epoch in range(Init_Epoch, UnFreeze_Epoch):
            if epoch >= Freeze_Epoch and not UnFreeze_flag and Freeze_Train:
                batch_size = Unfreeze_batch_size
                nbs             = 64
                lr_limit_max    = 1e-3 if optimizer_type == 'adam' else 1e-1
                lr_limit_min    = 1e-4 if optimizer_type == 'adam' else 5e-4
                if backbone in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:
                    nbs             = 256
                    lr_limit_max    = 1e-3 if optimizer_type == 'adam' else 1e-1
                    lr_limit_min    = 1e-5 if optimizer_type == 'adam' else 5e-4
                Init_lr_fit     = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)
                Min_lr_fit      = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)
                lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
                
                model.Unfreeze_backbone()

                epoch_step      = num_train // batch_size
                epoch_step_val  = num_val // batch_size

                if epoch_step == 0 or epoch_step_val == 0:
                    raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")

                if distributed:
                    batch_size = batch_size // ngpus_per_node

                gen             = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
                                        drop_last=True, collate_fn=detection_collate, sampler=train_sampler)
                gen_val         = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
                                        drop_last=True, collate_fn=detection_collate, sampler=val_sampler)

                UnFreeze_flag = True

            if distributed:
                train_sampler.set_epoch(epoch)
                
            set_optimizer_lr(optimizer, lr_scheduler_func, epoch)
            
            fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)

        if local_rank == 0:
            loss_history.writer.close()

 

 

(5)预测

代码:

import os

import numpy as np
import torch

from classification import (Classification, cvtColor, letterbox_image,
                            preprocess_input)
from utils.utils import letterbox_image
from utils.utils_metrics import evaluteTop1_5


test_annotation_path    = 'cls_test.txt'
metrics_out_path        = "metrics_out"

class Eval_Classification(Classification):
    def detect_image(self, image):        

        image       = cvtColor(image)

        image_data  = letterbox_image(image, [self.input_shape[1], self.input_shape[0]], self.letterbox_image)

        image_data  = np.transpose(np.expand_dims(preprocess_input(np.array(image_data, np.float32)), 0), (0, 3, 1, 2))

        with torch.no_grad():
            photo   = torch.from_numpy(image_data).type(torch.FloatTensor)
            if self.cuda:
                photo = photo.cuda()

            preds   = torch.softmax(self.model(photo)[0], dim=-1).cpu().numpy()

        return preds

if __name__ == "__main__":
    if not os.path.exists(metrics_out_path):
        os.makedirs(metrics_out_path)
            
    classfication = Eval_Classification()
    
    with open("./cls_test.txt","r") as f:
        lines = f.readlines()
    top1, top5, Recall, Precision = evaluteTop1_5(classfication, lines, metrics_out_path)
    print("top-1 accuracy = %.2f%%" % (top1*100))
    print("top-5 accuracy = %.2f%%" % (top5*100))
    print("mean Recall = %.2f%%" % (np.mean(Recall)*100))
    print("mean Precision = %.2f%%" % (np.mean(Precision)*100))

 

为了验证模型的效果,使用precision和recall作为评价指标。实验结果如下图所示。

(6)对图像进行分类预测结果

代码:

#分类
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn

from nets import get_model_from_name
from utils.utils import (cvtColor, get_classes, letterbox_image,
                         preprocess_input, show_config)



class Classification(object):
    _defaults = {

        "model_path"        : 'logs/best_epoch_weights.pth',
        "classes_path"      : 'model_data/cls_classes.txt',

        "input_shape"       : [224, 224],

        "backbone"          : 'mobilenetv2',

        "letterbox_image"   : False,

        "cuda"              : True
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"


    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        for name, value in kwargs.items():
            setattr(self, name, value)


        self.class_names, self.num_classes = get_classes(self.classes_path)
        self.generate()
        
        show_config(**self._defaults)

    def generate(self):

        if self.backbone not in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:
            self.model  = get_model_from_name[self.backbone](num_classes = self.num_classes, pretrained = False)
        else:
            self.model  = get_model_from_name[self.backbone](input_shape = self.input_shape, num_classes = self.num_classes, pretrained = False)
        device      = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model.load_state_dict(torch.load(self.model_path, map_location=device))
        self.model  = self.model.eval()
        print('{} model, and classes loaded.'.format(self.model_path))

        if self.cuda:
            self.model = nn.DataParallel(self.model)
            self.model = self.model.cuda()


    def detect_image(self, image):
        image       = cvtColor(image)

        image_data  = letterbox_image(image, [self.input_shape[1], self.input_shape[0]], self.letterbox_image)
        image_data  = np.transpose(np.expand_dims(preprocess_input(np.array(image_data, np.float32)), 0), (0, 3, 1, 2))

        with torch.no_grad():
            photo   = torch.from_numpy(image_data)
            if self.cuda:
                photo = photo.cuda()

            preds   = torch.softmax(self.model(photo)[0], dim=-1).cpu().numpy()

        class_name  = self.class_names[np.argmax(preds)]
        probability = np.max(preds)
        plt.rcParams['font.sans-serif'] = ['SimHei']
        plt.subplot(1, 1, 1)
        plt.imshow(np.array(image))
        if class_name == "smoking_images":
            plt.title('他正在吸烟的概率为:%.3f' %(probability))
            plt.show()
            return class_name
        else:
            plt.title('他没有在吸烟的概率为:%.3f' % (probability))
            plt.show()
            return class_name
#预测结果
from PIL import Image

from classification import Classification
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
classfication = Classification()

while True:
    img = input('Input image filename:')
    try:
        image = Image.open(img)
    except:
        print('Open Error! Try again!')
        continue
    else:
        class_name = classfication.detect_image(image)
        print(class_name)

 

 

 

 

 

 

(7)附完整程序源代码:

  1 #生成数据集信息
  2 import os
  3 from os import getcwd
  4 
  5 from utils.utils import get_classes
  6 
  7 classes_path    = 'model_data/cls_classes.txt'
  8 
  9 datasets_path   = 'datasets'
 10 
 11 sets            = ["train", "test"]
 12 classes, _      = get_classes(classes_path)
 13 
 14 if __name__ == "__main__":
 15     for se in sets:
 16         list_file = open('cls_' + se + '.txt', 'w')
 17 
 18         datasets_path_t = os.path.join(datasets_path, se)
 19         types_name      = os.listdir(datasets_path_t)
 20         for type_name in types_name:
 21             if type_name not in classes:
 22                 continue
 23             cls_id = classes.index(type_name)
 24             
 25             photos_path = os.path.join(datasets_path_t, type_name)
 26             photos_name = os.listdir(photos_path)
 27             for photo_name in photos_name:
 28                 _, postfix = os.path.splitext(photo_name)
 29                 if postfix not in ['.jpg', '.png', '.jpeg']:
 30                     continue
 31                 list_file.write(str(cls_id) + ";" + '%s'%(os.path.join(photos_path, photo_name)))
 32                 list_file.write('\n')
 33         list_file.close()
 34 
 35 #显示网络结构
 36 import torch
 37 from thop import clever_format, profile
 38 from torchsummary import summary
 39 
 40 from nets import get_model_from_name
 41 
 42 if __name__ == "__main__":
 43     input_shape = [224, 224]
 44     num_classes = 1000
 45     backbone    = "mobilenetv2"
 46     
 47     device  = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 48     model   = get_model_from_name[backbone](num_classes=num_classes, pretrained=False).to(device)
 49     
 50     summary(model, (3, input_shape[0], input_shape[1]))
 51 
 52     dummy_input     = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device)
 53     flops, params   = profile(model.to(device), (dummy_input, ), verbose=False)
 54 
 55     flops           = flops * 2
 56     flops, params   = clever_format([flops, params], "%.3f")
 57     print('Total GFLOPS: %s' % (flops))
 58     print('Total params: %s' % (params))
 59 #训练网络
 60 import os
 61 import numpy as np
 62 import torch
 63 import torch.backends.cudnn as cudnn
 64 import torch.distributed as dist
 65 import torch.nn as nn
 66 import torch.optim as optim
 67 from torch.utils.data import DataLoader
 68 
 69 from nets import get_model_from_name
 70 from utils.callbacks import LossHistory
 71 from utils.dataloader import DataGenerator, detection_collate
 72 from utils.utils import (download_weights, get_classes, get_lr_scheduler,
 73                          set_optimizer_lr, show_config, weights_init)
 74 from utils.utils_fit import fit_one_epoch
 75 
 76 if __name__ == "__main__":
 77 
 78     Cuda            = True
 79 
 80     distributed     = False
 81 
 82     sync_bn         = False
 83 
 84     fp16            = False
 85 
 86     classes_path    = 'model_data/cls_classes.txt'
 87 
 88     input_shape     = [224, 224]
 89 
 90     backbone        = "mobilenetv2"
 91 
 92     pretrained      = True
 93 
 94     model_path      = ""
 95 
 96     Init_Epoch          = 0
 97     Freeze_Epoch        = 50
 98     Freeze_batch_size   = 32
 99 
100     UnFreeze_Epoch      = 200
101     Unfreeze_batch_size = 32
102 
103     Freeze_Train        = True
104 
105     Init_lr             = 1e-2
106     Min_lr              = Init_lr * 0.01
107 
108     optimizer_type      = "sgd"
109     momentum            = 0.9
110     weight_decay        = 5e-4
111 
112     lr_decay_type       = "cos"
113 
114     save_period         = 10
115 
116     save_dir            = 'logs'
117 
118     num_workers         = 4
119 
120 
121     train_annotation_path   = "cls_train.txt"
122     test_annotation_path    = 'cls_test.txt'
123 
124 
125     ngpus_per_node  = torch.cuda.device_count()
126     if distributed:
127         dist.init_process_group(backend="nccl")
128         local_rank  = int(os.environ["LOCAL_RANK"])
129         rank        = int(os.environ["RANK"])
130         device      = torch.device("cuda", local_rank)
131         if local_rank == 0:
132             print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...")
133             print("Gpu Device Count : ", ngpus_per_node)
134     else:
135         device          = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
136         local_rank      = 0
137         rank            = 0
138 
139 
140     if pretrained:
141         if distributed:
142             if local_rank == 0:
143                 download_weights(backbone)
144             dist.barrier()
145         else:
146             download_weights(backbone)
147 
148 
149     class_names, num_classes = get_classes(classes_path)
150 
151     if backbone not in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:
152         model = get_model_from_name[backbone](num_classes = num_classes, pretrained = pretrained)
153     else:
154         model = get_model_from_name[backbone](input_shape = input_shape, num_classes = num_classes, pretrained = pretrained)
155 
156     if not pretrained:
157         weights_init(model)
158     if model_path != "":
159 
160         if local_rank == 0:
161             print('Load weights {}.'.format(model_path))
162 
163 
164         model_dict      = model.state_dict()
165         pretrained_dict = torch.load(model_path, map_location = device)
166         load_key, no_load_key, temp_dict = [], [], {}
167         for k, v in pretrained_dict.items():
168             if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
169                 temp_dict[k] = v
170                 load_key.append(k)
171             else:
172                 no_load_key.append(k)
173         model_dict.update(temp_dict)
174         model.load_state_dict(model_dict)
175 
176         if local_rank == 0:
177             print("\nSuccessful Load Key:", str(load_key)[:500], "……\nSuccessful Load Key Num:", len(load_key))
178             print("\nFail To Load Key:", str(no_load_key)[:500], "……\nFail To Load Key num:", len(no_load_key))
179 
180 
181     if local_rank == 0:
182         loss_history = LossHistory(save_dir, model, input_shape=input_shape)
183     else:
184         loss_history = None
185 
186 
187     if fp16:
188         from torch.cuda.amp import GradScaler as GradScaler
189         scaler = GradScaler()
190     else:
191         scaler = None
192 
193     model_train     = model.train()
194 
195     if sync_bn and ngpus_per_node > 1 and distributed:
196         model_train = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model_train)
197     elif sync_bn:
198         print("Sync_bn is not support in one gpu or not distributed.")
199 
200     if Cuda:
201         if distributed:
202 
203             model_train = model_train.cuda(local_rank)
204             model_train = torch.nn.parallel.DistributedDataParallel(model_train, device_ids=[local_rank], find_unused_parameters=True)
205         else:
206             model_train = torch.nn.DataParallel(model)
207             cudnn.benchmark = True
208             model_train = model_train.cuda()
209 
210 
211     with open(train_annotation_path, encoding='utf-8') as f:
212         train_lines = f.readlines()
213     with open(test_annotation_path, encoding='utf-8') as f:
214         val_lines   = f.readlines()
215     num_train   = len(train_lines)
216     num_val     = len(val_lines)
217     np.random.seed(10101)
218     np.random.shuffle(train_lines)
219     np.random.seed(None)
220 
221     if local_rank == 0:
222         show_config(
223             num_classes = num_classes, backbone = backbone, model_path = model_path, input_shape = input_shape, \
224             Init_Epoch = Init_Epoch, Freeze_Epoch = Freeze_Epoch, UnFreeze_Epoch = UnFreeze_Epoch, Freeze_batch_size = Freeze_batch_size, Unfreeze_batch_size = Unfreeze_batch_size, Freeze_Train = Freeze_Train, \
225             Init_lr = Init_lr, Min_lr = Min_lr, optimizer_type = optimizer_type, momentum = momentum, lr_decay_type = lr_decay_type, \
226             save_period = save_period, save_dir = save_dir, num_workers = num_workers, num_train = num_train, num_val = num_val
227         )
228 
229     wanted_step = 3e4 if optimizer_type == "sgd" else 1e4
230     total_step  = num_train // Unfreeze_batch_size * UnFreeze_Epoch
231 
232 
233     if True:
234         UnFreeze_flag = False
235 
236         if Freeze_Train:
237             model.freeze_backbone()
238 
239 
240         batch_size = Freeze_batch_size if Freeze_Train else Unfreeze_batch_size
241 
242 
243         nbs             = 64
244         lr_limit_max    = 1e-3 if optimizer_type == 'adam' else 1e-1
245         lr_limit_min    = 1e-4 if optimizer_type == 'adam' else 5e-4
246         if backbone in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:
247             nbs             = 256
248             lr_limit_max    = 1e-3 if optimizer_type == 'adam' else 1e-1
249             lr_limit_min    = 1e-5 if optimizer_type == 'adam' else 5e-4
250         Init_lr_fit     = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)
251         Min_lr_fit      = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)
252 
253         optimizer = {
254             'adam'  : optim.Adam(model_train.parameters(), Init_lr_fit, betas = (momentum, 0.999), weight_decay=weight_decay),
255             'sgd'   : optim.SGD(model_train.parameters(), Init_lr_fit, momentum = momentum, nesterov=True)
256         }[optimizer_type]
257 
258 
259         lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
260 
261         epoch_step      = num_train // batch_size
262         epoch_step_val  = num_val // batch_size
263 
264         train_dataset   = DataGenerator(train_lines, input_shape, True)
265         val_dataset     = DataGenerator(val_lines, input_shape, False)
266 
267         if distributed:
268             train_sampler   = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True,)
269             val_sampler     = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False,)
270             batch_size      = batch_size // ngpus_per_node
271             shuffle         = False
272         else:
273             train_sampler   = None
274             val_sampler     = None
275             shuffle         = True
276 
277         gen             = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
278                                 drop_last=True, collate_fn=detection_collate, sampler=train_sampler)
279         gen_val         = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
280                                 drop_last=True, collate_fn=detection_collate, sampler=val_sampler)
281 
282         for epoch in range(Init_Epoch, UnFreeze_Epoch):
283 
284             if epoch >= Freeze_Epoch and not UnFreeze_flag and Freeze_Train:
285                 batch_size = Unfreeze_batch_size
286 
287 
288                 nbs             = 64
289                 lr_limit_max    = 1e-3 if optimizer_type == 'adam' else 1e-1
290                 lr_limit_min    = 1e-4 if optimizer_type == 'adam' else 5e-4
291                 if backbone in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:
292                     nbs             = 256
293                     lr_limit_max    = 1e-3 if optimizer_type == 'adam' else 1e-1
294                     lr_limit_min    = 1e-5 if optimizer_type == 'adam' else 5e-4
295                 Init_lr_fit     = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)
296                 Min_lr_fit      = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)
297 
298                 lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
299 
300                 model.Unfreeze_backbone()
301 
302                 epoch_step      = num_train // batch_size
303                 epoch_step_val  = num_val // batch_size
304 
305 
306                 if distributed:
307                     batch_size = batch_size // ngpus_per_node
308 
309                 gen             = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
310                                         drop_last=True, collate_fn=detection_collate, sampler=train_sampler)
311                 gen_val         = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
312                                         drop_last=True, collate_fn=detection_collate, sampler=val_sampler)
313 
314                 UnFreeze_flag = True
315 
316             if distributed:
317                 train_sampler.set_epoch(epoch)
318 
319             set_optimizer_lr(optimizer, lr_scheduler_func, epoch)
320 
321             fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)
322 
323         if local_rank == 0:
324             loss_history.writer.close()
325 #分类
326 import matplotlib.pyplot as plt
327 import numpy as np
328 import torch
329 from torch import nn
330 
331 from nets import get_model_from_name
332 from utils.utils import (cvtColor, get_classes, letterbox_image,
333                          preprocess_input, show_config)
334 
335 
336 
337 class Classification(object):
338     _defaults = {
339 
340         "model_path"        : 'logs/best_epoch_weights.pth',
341         "classes_path"      : 'model_data/cls_classes.txt',
342 
343         "input_shape"       : [224, 224],
344 
345         "backbone"          : 'mobilenetv2',
346 
347         "letterbox_image"   : False,
348 
349         "cuda"              : True
350     }
351 
352     @classmethod
353     def get_defaults(cls, n):
354         if n in cls._defaults:
355             return cls._defaults[n]
356         else:
357             return "Unrecognized attribute name '" + n + "'"
358 
359 
360     def __init__(self, **kwargs):
361         self.__dict__.update(self._defaults)
362         for name, value in kwargs.items():
363             setattr(self, name, value)
364 
365 
366         self.class_names, self.num_classes = get_classes(self.classes_path)
367         self.generate()
368         
369         show_config(**self._defaults)
370 
371     def generate(self):
372 
373         if self.backbone not in ['vit_b_16', 'swin_transformer_tiny', 'swin_transformer_small', 'swin_transformer_base']:
374             self.model  = get_model_from_name[self.backbone](num_classes = self.num_classes, pretrained = False)
375         else:
376             self.model  = get_model_from_name[self.backbone](input_shape = self.input_shape, num_classes = self.num_classes, pretrained = False)
377         device      = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
378         self.model.load_state_dict(torch.load(self.model_path, map_location=device))
379         self.model  = self.model.eval()
380         print('{} model, and classes loaded.'.format(self.model_path))
381 
382         if self.cuda:
383             self.model = nn.DataParallel(self.model)
384             self.model = self.model.cuda()
385 
386 
387     def detect_image(self, image):
388         image       = cvtColor(image)
389 
390         image_data  = letterbox_image(image, [self.input_shape[1], self.input_shape[0]], self.letterbox_image)
391         image_data  = np.transpose(np.expand_dims(preprocess_input(np.array(image_data, np.float32)), 0), (0, 3, 1, 2))
392 
393         with torch.no_grad():
394             photo   = torch.from_numpy(image_data)
395             if self.cuda:
396                 photo = photo.cuda()
397 
398             preds   = torch.softmax(self.model(photo)[0], dim=-1).cpu().numpy()
399 
400         class_name  = self.class_names[np.argmax(preds)]
401         probability = np.max(preds)
402         plt.rcParams['font.sans-serif'] = ['SimHei']
403         plt.subplot(1, 1, 1)
404         plt.imshow(np.array(image))
405         if class_name == "smoking_images":
406             plt.title('他正在吸烟的概率为:%.3f' %(probability))
407             plt.show()
408             return class_name
409         else:
410             plt.title('他没有在吸烟的概率为:%.3f' % (probability))
411             plt.show()
412             return class_name
413 import os
414 
415 import numpy as np
416 import torch
417 
418 from classification import (Classification, cvtColor, letterbox_image,
419                             preprocess_input)
420 from utils.utils import letterbox_image
421 from utils.utils_metrics import evaluteTop1_5
422 
423 
424 test_annotation_path    = 'cls_test.txt'
425 metrics_out_path        = "metrics_out"
426 
427 class Eval_Classification(Classification):
428     def detect_image(self, image):        
429 
430         image       = cvtColor(image)
431 
432         image_data  = letterbox_image(image, [self.input_shape[1], self.input_shape[0]], self.letterbox_image)
433 
434         image_data  = np.transpose(np.expand_dims(preprocess_input(np.array(image_data, np.float32)), 0), (0, 3, 1, 2))
435 
436         with torch.no_grad():
437             photo   = torch.from_numpy(image_data).type(torch.FloatTensor)
438             if self.cuda:
439                 photo = photo.cuda()
440 
441             preds   = torch.softmax(self.model(photo)[0], dim=-1).cpu().numpy()
442 
443         return preds
444 
445 if __name__ == "__main__":
446     if not os.path.exists(metrics_out_path):
447         os.makedirs(metrics_out_path)
448             
449     classfication = Eval_Classification()
450     
451     with open("./cls_test.txt","r") as f:
452         lines = f.readlines()
453     top1, top5, Recall, Precision = evaluteTop1_5(classfication, lines, metrics_out_path)
454     print("top-1 accuracy = %.2f%%" % (top1*100))
455     print("top-5 accuracy = %.2f%%" % (top5*100))
456     print("mean Recall = %.2f%%" % (np.mean(Recall)*100))
457     print("mean Precision = %.2f%%" % (np.mean(Precision)*100))
458 
459 #预测结果
460 from PIL import Image
461 
462 from classification import Classification
463 import os
464 os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
465 classfication = Classification()
466 
467 while True:
468     img = input('Input image filename:')
469     try:
470         image = Image.open(img)
471     except:
472         print('Open Error! Try again!')
473         continue
474     else:
475         class_name = classfication.detect_image(image)
476         print(class_name)

 

四、总结

在本次任务中,学习了MobileNetV2网络,并且利用MobileNetV2实现了抽烟和打电话的图像识别,得到了较为不错的结果,mprecision达到了99.61%,mrecall达到了99.71。在后续的学习中,将会学习更多的经典网络结构,例如ResNet50和VGG16等,并且还会学习现在较为流行的注意力机制等方法,争取下次对更难的数据集进行识别。

标签:torch,机器,self,分类,lr,吸烟,path,model,image
From: https://www.cnblogs.com/zzjyyds/p/16988949.html

相关文章

  • 垃圾分类
    垃圾分类一、选题背景现在随着人口数量的增多,产生了越来越多的垃圾。为了保护好我们居住的环境,我们应该学会垃圾分类,尽到垃圾分类的义务,做一名合格的公民。垃圾分类可以......
  • 机器学习——车牌号码识别
    一、选题背景商场地下车库的监控可以识别车牌号码,可以识别号码并让其进去,当用户想要离开车库时,可以自动识别并放行 二、机器学习案例设计方案下载数据集,整理和处理好......
  • 机器学习——住房价格预测
    一、选题背景房价问题事关国计民生,已经成为全民关注的焦点议题之一。房地产更是我过最大的产业之一,对每个人对至关重要。本文主要对房价的合理性进行分析,估测了房价未......
  • 程序机器级表示
    计算机执行机器代码时,实际上就是用字节编码低级的操作计算机在发展过程中,x86-64处理器系列的指令是向后兼容的,即支持过去的指令集,即使是过去的指令集在现在的平台上也是可以......
  • 评论智能分类
    评论智能分类一、选题的背景如今网络购物越来越发达,人们在挑选东西的时候往往会看一下商品的评价信息,信息的量是十分巨大的,因此人工分类已经不能满足需求了,所以就需要计......
  • 机器学习——花的种类识别
    (一)选题背景:自古以来花便是人们生活中常见的点缀物,也是人们诸多情绪的寄托品,有许多诗人文豪托物言志写下了许多的传世佳作,探望病人时人们会送百合、康乃馨以示祝福......
  • 傅里叶变换在机器视觉的运用
    傅里叶变换在机器视觉的运用这样一幅图像1、是如何生成的?2、体现了什么?3、如何处理并用来增强原始图片数据?一、这样的图像是如何生......
  • 机器学习---花卉识别
    一、选题的背景因为我以前的专业是林学,平时需要上山出外业经常遇到一些不认识的花,那时候问老师或者自身学习记住了不少,但是渐渐的也忘记了,所以我选了花卉识别作为题目。......
  • 机器学习——机动车图片识别
    一、选题的背景随着城市化建设不断发展,我国对交通建设的需求也不断增长,成为了世界上在交通领域基础设施建设最快的国家之一,但车辆管控问题、道路交通问题、车辆违章问题......
  • 机器学习——自动生成古诗词
    自动生成古诗词一、选题背景自动生成古诗词的初衷是想培养中小学生的传统文化,感受中华上下五千年的古诗词魅力,并培养他们的作词能力,陶冶情操二、机器学习的实现步骤从......