1.一维前缀和
前缀和是指某序列的前n项和,可以把它理解为数学上的数列的前n项和,而差分可以看成前缀和的逆运算。合理的使用前缀和与差分,可以将某些复杂的问题简单化。
有一个长度为n的序列,求序列中r到l的和。如果数据很大采用循环遍历肯定会TLE,所以就要采用前缀和的方式来求解
#include<iostream>
using namespace std;
const int N=100010;
int a[N],s[N];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s[i]=s[i-1]+a[i]; //预处理先求出前缀和数组
}
while(m--)
{
int r,l;
scanf("%d%d",&l,&r);
printf("%d\n",s[r]-s[l-1]);
}
return 0;
}
1.1二维前缀和
输入一个 n行 m列的整数矩阵,再输入 q个询问,每个询问包含四个整数 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
#include <iostream>
using namespace std;
const int N = 1010;
int a[N][N], s[N][N];
int main() {
int n, m, q;
cin >> n >> m >> q;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
scanf("%d", &a[i][j]);
s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + a[i][j]; // 求前缀和
}
while (q--)
{
int x1,y1,x2,y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
// 算子矩阵的和
printf("%d\n", s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1]);
}
return 0;
}
计算子矩阵(x1,y1),(x2,y2)时不能要做一个-1处理,不能将(x1,y1)也减掉。
将坐标代入样例中即可一目了然
2差分
差分数组:
首先给定一个原数组a:a[1], a[2], a[3],,,,,, a[n];
然后我们构造一个数组b : b[1], b[2], b[3],,,,,, b[i];
使得 a[i] = b[1] + b[2] + b[3] + ,,,,,, + b[i]
也就是说,a数组是b数组的前缀和数组,反过来我们把b数组叫做a数组的差分数组。换句话说,每一个a[i]都是b数组中从头开始的一段区间和。
输入一个长度为 n
的整数序列。
接下来输入 m 个操作,每个操作包含三个整数 l,r,c
,表示将序列中 [l,r]之间的每个数加上 c。
请你输出进行完所有操作后的序列。
#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int a[N], b[N];
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
b[i] = a[i] - a[i - 1]; //构建差分数组 a[i]=b[i]+a[i-1];
}
int l, r, c;
while (m--)
{
scanf("%d%d%d", &l, &r, &c);
b[l] += c; //将序列中[l, r]之间的每个数都加上c
b[r + 1] -= c;
}
for (int i = 1; i <= n; i++)
{
a[i] = b[i] + a[i - 1]; //前缀和运算。因为b数组做过更改,所以直接做一遍前缀和运算即可。
printf("%d ", a[i]);
}
return 0;
}
2.2二维差分数组
输入一个n行m列的整数矩阵,再输入q个操作,每个操作包含五个整数x1, y1, x2, y2, c,其中(x1, y1)和(x2, y2)表示一个子矩阵的左上角坐标和右下角坐标。每个操作都要将选中的子矩阵中的每个元素的值加上c。请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数n, m, q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含5个整数x1, y1, x2, y2, c,表示一个操作。
#include<iostream>
#include<cstdio>
using namespace std;
const int N = 1e3 + 10;
int a[N][N], b[N][N];
void insert(int x1, int y1, int x2, int y2, int c)
{
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main()
{
int n, m, q;
cin >> n >> m >> q;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
cin >> a[i][j];
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
insert(i, j, i, j, a[i][j]); //构建差分数组
}
}
while (q--)
{
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1, y1, x2, y2, c);
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1]; //二维前缀和
}
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
printf("%d ", b[i][j]);
}
printf("\n");
}
return 0;
}
b[x1][y1] += c ; 对应图1 ,让整个a数组中蓝色矩形面积的元素都加上了c。
b[x1,][y2 + 1] -= c ; 对应图2 ,让整个a数组中绿色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2 + 1][y1] -= c ; 对应图3 ,让整个a数组中紫色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2 + 1][y2 + 1] += c; 对应图4,让整个a数组中红色矩形面积的元素再加上c,红色内的相当于被减了两次,再加上一次c,才能使其恢复。
我们可以先假想a数组为空,那么b数组一开始也为空,但是实际上a数组并不为空,因此我们每次让以(i,j)为左上角到以(i,j)为右下角面积内元素(其实就是一个小方格的面积)去插入 c = a[i][j] ,等价于原数组a中(i,j) 到(i,j)范围内 加上了 a[i][j] ,因此执行 n*m次插入操作,就成功构建了差分b数组
标签:y2,前缀,int,差分,x2,数组,y1,x1 From: https://www.cnblogs.com/onginer/p/16999393.html