首页 > 其他分享 >二、高斯过程回归_numpy实现

二、高斯过程回归_numpy实现

时间:2022-12-21 18:55:47浏览次数:41  
标签:高斯 sigma 回归 train params np numpy self dot

import numpy as np
from scipy.optimize import minimize

class GPR(object):
    def __init__(self, optimize=True):
        self.is_fit = False
        self.train_X, self.train_y = None, None
        self.params = {"l": 0.5, "sigma_f": 0.2}
        self.optimize = optimize

    def fit(self, X, y):
        # store train data
        self.train_X = np.asarray(X)
        self.train_y = np.asarray(y)
        def negative_log_likelihood_loss(params):
            self.params["l"], self.params["sigma_f"] = params[0], params[1]
            Kyy = self.kernel(self.train_X, self.train_X) + 1e-8 * np.eye(len(self.train_X))
            loss = 0.5 * self.train_y.T.dot(np.linalg.inv(Kyy)).dot(self.train_y) + 0.5 * np.linalg.slogdet(Kyy)[
                1] + 0.5 * len(self.train_X) * np.log(2 * np.pi)
            return loss.ravel()

        if self.optimize:
            res = minimize(negative_log_likelihood_loss, [self.params["l"], self.params["sigma_f"]],
                           bounds=((1e-4, 1e4), (1e-4, 1e4)),
                           method='L-BFGS-B')
            self.params["l"], self.params["sigma_f"] = res.x[0], res.x[1]
        self.is_fit = True

    def predict(self, X):
        if not self.is_fit:
            print("GPR Model not fit yet.")
            return

        X = np.asarray(X)
        Kff = self.kernel(self.train_X, self.train_X)  # (N, N)
        Kyy = self.kernel(X, X)  # (k, k)
        Kfy = self.kernel(self.train_X, X)  # (N, k)
        Kff_inv = np.linalg.inv(Kff + 1e-8 * np.eye(len(self.train_X)))  # (N, N)

        mu = Kfy.T.dot(Kff_inv).dot(self.train_y)
        cov = Kyy - Kfy.T.dot(Kff_inv).dot(Kfy)
        return mu, cov

    def kernel(self, x1, x2):
        dist_matrix = np.sum(x1 ** 2, 1).reshape(-1, 1) + np.sum(x2 ** 2, 1) - 2 * np.dot(x1, x2.T)
        return self.params["sigma_f"] ** 2 * np.exp(-0.5 / self.params["l"] ** 2 * dist_matrix)

if __name__ == '__main__':
    def y_2d(x, noise_sigma=0.0):
        x = np.asarray(x)
        y = np.sin(0.5 * np.linalg.norm(x, axis=1))
        y += np.random.normal(0, noise_sigma, size=y.shape)
        return y
    train_X = np.random.uniform(-4, 4, (10, 3))
    train_y = y_2d(train_X, noise_sigma=1e-4)
    print(train_X.shape, train_y.shape)
    test_X = np.random.uniform(-10, 10, (10, 3))
    gpr = GPR(optimize=True)
    gpr.fit(train_X, train_y)
    mu, cov = gpr.predict(test_X)
    print(mu)

 

标签:高斯,sigma,回归,train,params,np,numpy,self,dot
From: https://www.cnblogs.com/zhangxianrong/p/16996938.html

相关文章