人工智能的浪潮正席卷全球,诸多词汇时刻萦绕在我们的耳边,如人工智能,机器学习,深度学习等。“人工智能”的概念早在1956年就被提出,顾名思义用计算机来构造复杂的,拥有与人类智慧同样本质特性的机器。经过几十年的发展,在2012年后,得益于数据量的上涨,运算力的提升和机器学习算法(深度学习)的出现,人工智能开始大爆发。但目前的科研工作都集中在弱人工智能部分,即让机器具备观察和感知能力,可以一定程度的理解和推理,预期在该领域能够取得一些重大突破。电影里的人工智能多半都是在描绘强人工智能,即让机器获得自适应能力,解决一些之前还没遇到过的问题,而这部分在目前的现实世界里难以真正实现。
弱人工智能有希望取得突破,是如何实现的,“智能”又从何而来呢?这主要归功于一种实现人工智能的方法——机器学习。
一、机器学习概念
机器学习是一种实现人工智能的方法。
机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。
传统的机器学习算法在指纹识别、基于Haar的人脸检测、基于HoG特征的物体检测等领域的应用基本达到了商业化的要求或者特定场景的商业化水平,但每前进一步都异常艰难,直到深度学习算法的出现。
二、深度学习概念
深度学习是一种实现机器学习的技术。
深度学习本来并不是一种独立的学习方法,其本身也会用到有监督和无监督的学习方法来训练深度神经网络。但由于近几年该领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。
最初的深度学习是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法和激活函数等方面做出相应的调整。其实有不少想法早年间也曾有过,但由于当时训练数据量不足、计算能力落后,因此最终的效果不尽如人意。
深度学习,作为目前最热的机器学习方法,但并不意味着是机器学习的终点。起码目前存在以下问题:
1) 深度学习模型需要大量的训练数据,才能展现出神奇的效果,但现实生活中往往会遇到小样本问题,此时深度学习方法无法入手,传统的机器学习方法就可以处理;
2) 有些领域,采用传统的简单的机器学习方法,可以很好地解决了,没必要非得用复杂的深度学习方法;
3) 深度学习的思想,来源于人脑的启发,但绝不是人脑的模拟。
因此,机器学习框架和深度学习框架之间也是有区别的。本质上,机器学习框架涵盖用于分类,回归,聚类,异常检测和数据准备的各种学习方法,并且其可以或可以不包括神经网络方法。深度学习或深度神经网络(DNN)框架涵盖具有许多隐藏层的各种神经网络拓扑。这些层包括模式识别的多步骤过程。网络中的层越多,可以提取用于聚类和分类的特征越复杂。我们常见的Caffe,CNTK,DeepLearning4j,Keras,MXNet和TensorFlow是深度学习框架。 Scikit-learning和Spark MLlib是机器学习框架。 Theano跨越了这两个类别。
本文接下来的篇幅将会重点介绍深度学习的三个框架caffe、tensorflow和keras,如果只是需要使用传统的机器学习基础算法使用scikit-learning和spark MLlib则更为合适。
三、深度学习框架比较
神经网络一般包括:训练,测试两大阶段。训练:就是把训练数据(原料)和神经网络模型:如AlexNet、RNN等“倒进” 神经网络训练框架例如cafffe等然后用 CPU或GPU(真火) “提炼出” 模型参数(仙丹)的过程。测试:就是把测试数据用训练好的模型(神经网络模型 + 模型参数)跑一跑看看结果如何,作为炼丹炉caffe,keras,tensorflow就是把炼制过程所涉及的概念做抽象,形成一套体系。
(一)Caffe
1、概念介绍
Caffe是一个清晰而高效的深度学习框架,也是一个被广泛使用的开源深度学习框架,在Tensorflow出现之前一直是深度学习领域Github star最多的项目。
Caffe的主要优势为:容易上手,网络结构都是以配置文件形式定义,不需要用代码设计网络。训练速度快,组件模块化,可以方便的拓展到新的模型和学习任务上。但是Caffe最开始设计时的目标只针对于图像,没有考虑文本、语音或者时间序列的数据,因此Caffe对卷积神经网络的支持非常好,但是对于时间序列RNN,LSTM等支持的不是特别充分。caffe工程的models文件夹中常用的网络模型比较多,比如Lenet、AlexNet、ZFNet、VGGNet、GoogleNet、ResNet等。
2、Caffe的模块结构
总的来讲,由低到高依次把网络中的数据抽象成Blob, 各层网络抽象成 Layer ,整个网络抽象成Net,网络模型的求解方法 抽象成 Solver。
1) Blob 主要用来表示网络中的数据,包括训练数据,网络各层自身的参数,网络之间传递的数据都是通过 Blob 来实现的,同时 Blob 数据也支持在 CPU 与 GPU 上存储,能够在两者之间做同步。
2) Layer 是对神经网络中各种层的一个抽象,包括我们熟知的卷积层和下采样层,还有全连接层和各种激活函数层等等。同时每种 Layer 都实现了前向传播和反向传播,并通过 Blob 来传递数据。
3) Net 是对整个网络的表示,由各种 Layer 前后连接组合而成,也是我们所构建的网络模型。
4) Solver 定义了针对 Net 网络模型的求解方法,记录网络的训练过程,保存网络模型参数,中断并恢复网络的训练过程。自定义 Solver 能够实现不同的网络求解方式。
3、安装方式
Caffe 需要预先安装比较多的依赖项,CUDA,snappy,leveldb,gflags,glog,szip,lmdb,OpenCV,hdf5,BLAS,boost等等
Caffe官网:http://caffe.berkeleyvision.org/
Caffe Github : https://github.com/BVLC/caffe
Caffe 安装教程:http://caffe.berkeleyvision.org/installation.html http://blog.csdn.net/yhaolpz/article/details/71375762
Caffe 安装分为CPU和GPU版本,GPU版本需要显卡支持以及安装CUDA。
Caffe依赖 ProtoBuffer Boost GFLAGS GLOG BLAS HDF5 OpenCV LMDB LEVELDB Snappy
4、使用Caffe搭建神经网络
使用流程 | 操作说明 |
1、数据格式处理 | 将数据处理成caffe支持格式,具体包括:LEVELDB,LMDB,内存数据,hdfs数据,图像数据,windows,dummy等。 |
2、编写网络结构文件 | 定义网络结构,如当前网络包括哪几层,每层作用是什么,使用caffe过程中最麻烦的一个操作步骤。具体编写格式可参考caffe框架自带自动识别手写体样例:caffe/examples/mnist/lenet_train_test.prototxt。 |
3、编写网络求解文件 | 定义了网络模型训练过程中需要设置的参数,比如学习率,权重衰减系数,迭代次数,使用GPU还是CP等,一般命名方式为xx_solver.prototxt,可参考:caffe/examples/mnist/lenet_solver.prototxt。 |
4、训练 | 基于命令行的训练,如:caffe train -solver examples/mnist/lenet_solver.prototxt |
5、测试 | caffe test -model examples/mnist/lenet_train_test.prototxt -weights examples/mnist/lenet_iter_10000.caffemodel -gpu 0 -iterations 100 |
在上述流程中,步骤2是核心操作,也是caffe使用最让人头痛的地方,keras则对该部分做了更高层的抽象,让使用者能够快速编写出自己想要实现的模型。
(二) Tensorflow
1、概念介绍
TensorFlow是一个使用数据流图进行数值计算的开源软件库。图中的节点表示数学运算,而图边表示在它们之间传递的多维数据阵列(又称张量)。灵活的体系结构允许你使用单个API将计算部署到桌面、服务器或移动设备中的一个或多个CPU或GPU。Tensorflow涉及相关概念解释如下:
1)符号计算
符号计算首先定义各种变量,然后建立一个“计算图”,计算图规定了各个变量之间的计算关系。 符号计算也叫数据流图,其过程如下图所示,数据是按图中黑色带箭头的线流动的。
数据流图用“结点”(nodes)和“线”(edges)的有向图来描述数学计算。
① “节点” 一般用来表示施加的数学操作,但也可以表示数据输入(feed in)的起点/输出(push out)的终点,或者是读取/写入持久变量(persistent variable)的终点。
② “线”表示“节点”之间的输入/输出关系。
③ 在线上流动的多维数据阵列被称作“张量”。
2)张量
张量(tensor),可以看作是向量、矩阵的自然推广,用来表示广泛的数据类型。张量的阶数也叫维度。
0阶张量,即标量,是一个数。
1阶张量,即向量,一组有序排列的数
2阶张量,即矩阵,一组向量有序的排列起来
3阶张量,即立方体,一组矩阵上下排列起来
4阶张量......
依次类推
3)数据格式(data_format)
目前主要有两种方式来表示张量:
① th模式或channels_first模式,Theano和caffe使用此模式。
② tf模式或channels_last模式,TensorFlow使用此模式。
下面举例说明两种模式的区别:
对于100张RGB3通道的16×32(高为16宽为32)彩色图,
th表示方式:(100,3,16,32)
tf表示方式:(100,16,32,3)
唯一的区别就是表示通道个数3的位置不一样。
2、Tensorflow的模块结构
Tensorflow/core目录包含了TF核心模块代码,具体结构如图所示:
3、安装方式
1、官网下载naconda安装:https://www.anaconda.com/download/
2、依次在Anaconda Prompt控制台,按以下5个步骤输入指令进行安装:
1) 安装py3+ cmd : conda create -n py3.6 python=3.6 anaconda
2) 激活虚拟环境 cmd : activate py3.6
3) 激活TSF预安装cmd:
conda create -n tensorflow python=3.6
activate tensorflow
4) 安装TSF:
pip install --ignore-installed --upgrade tensorflow
pip install --ignore-installed --upgrade tensorflow-gpu
5) 退出虚拟环境cmd :deactivate py3.6
4、使用Tensorflow搭建神经网络
使用Tensorflow搭建神经网络主要包含以下6个步骤:
1) 定义添加神经层的函数
2) 准备训练的数据
3) 定义节点准备接收数据
4) 定义神经层:隐藏层和预测层
5) 定义 loss 表达式
6) 选择 optimizer 使 loss 达到最小
7) 对所有变量进行初始化,通过 sess.run optimizer,迭代多次进行学习。
5、示例代码
Tensorflow 构建神经网络识别手写数字,具体代码如下所示:
import tensorflow as tf
import numpy as np# 添加层def add_layer(inputs, in_size, out_size, activation_function=None): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs# 1.训练的数据# Make up some real data x_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise # 2.定义节点准备接收数据# define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 1]) ys = tf.placeholder(tf.float32, [None, 1]) # 3.定义神经层:隐藏层和预测层# add hidden layer 输入值是 xs,在隐藏层有 10 个神经元 l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) # add output layer 输入值是隐藏层 l1,在预测层输出 1 个结果 prediction = add_layer(l1, 10, 1, activation_function=None) # 4.定义 loss 表达式# the error between prediciton and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) # 5.选择 optimizer 使 loss 达到最小 # 这一行定义了用什么方式去减少 loss,学习率是 0.1 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # important step 对所有变量进行初始化 init = tf.initialize_all_variables() sess = tf.Session() # 上面定义的都没有运算,直到 sess.run 才会开始运算 sess.run(init) # 迭代 1000 次学习,sess.run optimizerfor i in range(1000): # training train_step 和 loss 都是由 placeholder 定义的运算,所以这里要用 feed 传入参数 sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: # to see the step improvement print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
(三) Keras
1、概念介绍
Keras由纯Python编写而成并基于Tensorflow、Theano以及CNTK后端,相当于Tensorflow、Theano、 CNTK的上层接口,号称10行代码搭建神经网络,具有操作简单、上手容易、文档资料丰富、环境配置容易等优点,简化了神经网络构建代码编写的难度。目前封装有全连接网络、卷积神经网络、RNN和LSTM等算法。
Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况。
1) 序贯模型(Sequential):单输入单输出,一条路通到底,层与层之间只有相邻关系,没有跨层连接。这种模型编译速度快,操作也比较简单
2) 函数式模型(Model):多输入多输出,层与层之间任意连接。这种模型编译速度慢。
2、Keras的模块结构
Keras主要由5大模块构成,模块之间的关系及每个模块的功能如图所示:
3、安装方式
Keras的安装方式有以下三个步骤:
1) 安装anaconda(python)
2) 用于科学计算的python发行版,支持Linux、Mac、Windows系统,提供了包管理与环境管理的功能,可以很方便的解决多版本python并存、切换以及各种第三方包安装问题。
3) 利用pip或者conda安装numpy、keras、 pandas、tensorflow等库
下载地址: https://www.anaconda.com/what-is-anaconda/
4、使用Keras搭建神经网络
使用keras搭建一个神经网络,包括5个步骤,分别为模型选择、构建网络层、编译、训练和预测。每个步骤操作过程中使用到的keras模块如图所示。
6、示例代码
Kears构建神经网络识别手写数字,具体代码如下所示:
from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.datasets import mnist import numpy ''' 第一步:选择模型''' model = Sequential() ''' 第二步:构建网络层''' model.add(Dense(500,input_shape=(784,))) # 输入层,28*28=784 model.add(Activation('tanh')) # 激活函数是tanh model.add(Dropout(0.5)) # 采用50%的dropout model.add(Dense(500)) # 隐藏层节点500个 model.add(Activation('tanh')) model.add(Dropout(0.5))model.add(Dense(10)) # 输出结果是10个类别,所以维度是10 model.add(Activation('softmax')) # 最后一层用softmax作为激活函数''' 第三步:编译''' sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # 优化函数,设定学习率(lr)等参数 model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode='categorical') # 使用交叉熵作为loss函数''' 第四步:训练 .fit的一些参数 batch_size:对总的样本数进行分组,每组包含的样本数量 epochs :训练次数 shuffle:是否把数据随机打乱之后再进行训练 validation_split:拿出百分之多少用来做交叉验证 verbose:屏显模式 0:不输出 1:输出进度 2:输出每次的训练结果 ''' (X_train, y_train), (X_test, y_test) = mnist.load_data() # 使用Keras自带的mnist工具读取数据(第一次需要联网)# 由于mist的输入数据维度是(num, 28, 28),这里需要把后面的维度直接拼起来变成784维 X_train = X_train.reshape(X_train.shape[0], X_train.shape[1] * X_train.shape[2]) X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2]) Y_train = (numpy.arange(10) == y_train[:, None]).astype(int) Y_test = (numpy.arange(10) == y_test[:, None]).astype(int) model.fit(X_train,Y_train,batch_size=200,epochs=50,shuffle=True,verbose=0,validation_split=0.3) model.evaluate(X_test, Y_test, batch_size=200, verbose=0) ''' 第五步:输出'''print("test set")scores = model.evaluate(X_test,Y_test,batch_size=200,verbose=0) print("") print("The test loss is %f" % scores)result = model.predict(X_test,batch_size=200,verbose=0)result_max = numpy.argmax(result, axis = 1)test_max = numpy.argmax(Y_test, axis = 1)result_bool = numpy.equal(result_max, test_max) true_num = numpy.sum(result_bool) print("") print("The accuracy of the model is %f" % (true_num/len(result_bool)))
(四)框架性能及优缺点对比
表 3-2 深度学习框架对比
对比维度 | Caffe | Tensorflow | Kears |
上手难度 | 1、不用不写代码,只需在.prototxt文件中定义网络结构就可以完成模型训练。 2、安装过程复杂,且在.prototxt 文件内部设计网络节构比较受限,没有在Python 中设计网络结构方便、自由。配置文件不能用编程的方式调整超参数,对交叉验证、超参数Grid Search 等操作无法很方便的支持。 | 1、安装简单,教学资源丰富,根据样例能快速搭建出基础模型。 2、有一定的使用门槛。不管是编程范式,还是数学统计基础,都为非机器学习与数据科学背景的伙伴们带来一定的上手难度。另外,是一个相对低层的框架,使用时需要编写大量的代码,重新发明轮子。 | 1、安装简单,它旨在让用户进行最快速的原型实验,让想法变为结果的这个过程最短,非常适合最前沿的研究。 2、API使用方便,用户只需要将高级的模块拼在一起,就可以设计神经网络,降低了编程和阅读别人代码时的理解开销。 |
框架维护 | 在 TensorFlow 出现之前一直是深度学习领域 GitHub star 最多的项目,前由伯克利视觉学中心(Berkeley Vision and Learning Center,BVLC)进行维护。 | 被定义为“最流行”、“最被认可”的开源深度学习框架, 拥有产品级的高质量代码,有 Google 强大的开发、维护能力的加持,整体架构设计也非常优秀。 | 开发主要由谷歌支持, API以“tf.keras"的形式打包在TensorFlow中。微软维护着Keras的CNTK后端。亚马逊AWS正在开发MXNet支持。其他提供支持的公司包括NVIDIA、优步、苹果(通过CoreML) |
支持语言 | C++/Cuda | C++ python (Go,Java,Lua,Javascript,或者是R) | Python |
封装算法 | 1、对卷积神经网络的支持非常好,拥有大量的训练好的经典模型(AlexNet、VGG、Inception)乃至其他 state-of-the-art (ResNet等)的模型,收藏在它的 Model Zoo。 2、对时间序列 RNN、LSTM 等支持得不是特别充分。 | 1、支持CNN与RNN, 还支持深度强化学习乃至其他计算密集的科学计算(如偏微分方程求解等)。 2、计算图必须构建为静态图,这让很多计算变得难以实现,尤其是序列预测中经常使用的 beam search。 | 1、专精于深度学习,支持卷积网络和循环网络,支持级联的模型或任意的图结构的模型,从 CPU 上计算切换到 GPU 加速无须任何代码的改动。 2、没有增强学习工具箱,自己修改实现很麻烦。封装得太高级,训练细节不能修改、penalty细节很难修改。 |
模型部署 | 1、程序运行非常稳定,代码质量比较高,很适合对稳定性要求严格的生产环境,第一个主流的工业级深度学习框架。Caffe 的底层基于 C++,可以在各种硬件环境编译并具有良好的移植性,支持 Linux、Mac 和 Windows 系统,也可以编译部署到移动设备系统如 Android 和 iOS 上。 | 1、为生产环境设计的高性能的机器学习服务系统,可以同时运行多个大规模深度学习模型,支持模型生命周期管理、算法实验,并可以高效地利用 GPU 资源,让训练好的模型更快捷方便地投入到实际生产环境。灵活的移植性,可以将同一份代码几乎不经过修改就轻松地部署到有任意数量 CPU 或 GPU 的 PC、服务器或者移动设备上。 | 1、使用TensorFlow、CNTK、Theano作为后端,简化了编程的复杂度,节约了尝试新网络结构的时间。模型越复杂,收益越大,尤其是在高度依赖权值共享、多模型组合、多任务学习等模型上,表现得非常突出。 |
性能 | 目前仅支持单机多 GPU 的训练,不支持分布式的训练。 | 1、支持分布式计算,使 GPU 集群乃至 TPU 集群并行计算,共同训练出一个模型。 2、对不同设备间的通信优化得不是很好,分布式性能还没有达到最优。 | 无法直接使用多 GPU,对大规模的数据处理速度没有其他支持多 GPU 和分布式的框架快。用TensorFLow backend时速度比纯TensorFLow 下要慢很多。 |
如表3-2对比维度所示,对于刚入门机器学习的新手而已,keras无疑是最好的选择,能够快速搭建模型验证想法。随着对机型学习的理解逐步加深,业务模型越来越复杂时,可以根据实际需要转到Tensorflow或Caffe。
四、结束语
深度学习的研究在持续进行中,一直与其它经典机器学习算法并存,各类深度学习框架也是遍地开花,各有偏向,优劣各异,具体用哪种要根据应用场景灵活选择。正如本文导语所言,科学不是战争而是合作。任何学科的发展从来都不是一条路走到黑,而是同行之间互相学习、互相借鉴、博采众长、相得益彰,站在巨人的肩膀上不断前行。对机器学习和深度学习的研究也是一样。