原题链接: http://acm.hdu.edu.cn/showproblem.php?pid=1024
一:原题内容
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S
1, S
2, S
3, S
4 ... S
x, ... S
n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S
x ≤ 32767). We define a function sum(i, j) = S
i + ... + S
j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i
1, j
1) + sum(i
2, j
2) + sum(i
3, j
3) + ... + sum(i
m, j
m) maximal (i
x ≤ i
y ≤ j
x or i
x ≤ j
y ≤ j
x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i
x, j
x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3 ... S
n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
Hint
二:分析理解
最大m段子序列和问题。
设输入的数组为a[1...n],从中找出m个段,使者几个段的和为最大
dp[i][j]表示前j个数中取i个段的和的最大值,其中最后一个段包含a[j]。(这很关键)
则状态转移方程为:
dp[i][j]=max{dp[i][j-1]+a[j],max{dp[i-1][t]}+a[j]} i-1=<t<=j-1
因为dp[i][j]中a[j]可能就自身一个数组成最后一段,或者a[j]与a[j-1]等前面的数组成最后一段。
此题n数据太大,二维数组开不下,而且三重循环,想到状态转移方程后还是困难重重。
想想,二维数组不行的话,肯定要压缩成一维数组:
因为dp[i-1][t]的值只在计算dp[i][j]的时候用到,那么没有必要保存所有的dp[i][j] 1<=i<=m,这样我们可以用一维数组存储。
用pre[j]表示j之前一个状态dp[i-1][]中1---j之间,不一定包含a[j]的最大字段和,然后推dp[i][j]状态时,dp[i][j]=max{pre[j-1],dp[j-1]}+a[j];
三:AC代码
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[1000010];
int pre[1000010];
int a[1000010];
int main()
{
int m, n;
int maxx;
while (~scanf("%d%d", &m, &n))
{
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
memset(pre, 0, sizeof(pre));
for (int i = 1; i <= m; i++)
{
maxx = -1 << 28;
for (int j = i; j <= n; j++)
{
dp[j] = max(dp[j - 1], pre[j - 1]) + a[j];
pre[j - 1] = maxx;
if (maxx < dp[j])
maxx = dp[j];
}
}
printf("%d\n", maxx);
}
return 0;
}