\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)
选择性第二册同步巩固,难度2颗星!
基础知识
函数单调性与导数
在某个区间\((a ,b)\)内,若\(f'(x)>0\),则函数\(y=f(x)\)在这个区间内单调递增;
若\(f'(x)<0\) ,则函数\(y=f(x)\)在这个区间内单调递减.
解释
(1) 如下图,导数\(f' (x_0)\)表示函数\(y=f(x)\)的图象在点\((x_0,f(x_0))\)处的切线的斜率,可发现,
在\(x=x_0\)处,\(f' (x_0 )>0\),切线是“左下右上”的上升式,函数\(f(x)\)的图象也是上升的,函数\(f(x)\))在\(x=x_0\)附近单调递增;
在\(x=x_1\)处,\(f' (x_1 )<0\),切线是“左上右下”的下降式,函数\(f(x)\)的图象也是下降的,函数\(f(x)\)在\(x=x_1\)附近单调递减.
(2) 若函数\(y=f(x)\)在某个区间\((a ,b)\)内单调递增,则\(∀x∈(a ,b)\) ,\(f' (x)≥0\)(含等号)恒成立,但不存在一区间\((c ,d)⊆(a ,b)\)内使得\(f' (x)=0\);
假如存在一区间\((c ,d)⊆(a ,b)\)内使得\(f' (x)=0\),那原函数\(y=f(x)\)在区间\((c ,d)\)内恒等于一个常数,即\(f(x)=m\)(\(m\)是个常数),则原函数不可能在\((a ,b)\)内单调递增.
\(\qquad \qquad\)
函数\(y=f(x)\)在某个区间\((a ,b)\)内单调递减有类似结论!
(3)导函数“穿线图”与原函数“趋势图”
① 导函数“穿线图”关注导函数在各区间的正负,故特别注意函数与x轴的交点情况,
如\(f'(x)=x\)与\(f' (x)=e^x-1\)的“穿线图”视为一样的,它们在\((-∞,0)\)上为负,在\((0,+∞)\)上为正.
\(\qquad \qquad\)
② 原函数“趋势图”仅关注函数在各区间上的单调性,没顾及其最值或曲线形状等,
如由导函数\(f' (x)=x-1\)的“穿线图”易得原函数\(y=f(x)\)在\((-∞,0)\)上递减,在\((0,+∞)\)上为递增,趋势图可如下图,
③ 后面涉及到函数单调性均可通过分析导函数“穿线图”得出原函数的单调性.
对含参函数单调性的分析思路
(1) 如何分析原函数的单调性?
答:分析原函数的单调性等价于分析导函数的正负性.
(2) 那如何分析导函数的正负性呢?.
答:数形结合,若能得到导函数的“穿线图”(即解导数不等式,与其零点有莫大关系)),看图“说话”便可,进而得出原函数的“趋势图”(即原函数的大致趋势)也不难了(看下图).
(导函数看“零点”,原函数看单调性)
(3) 那要得到导函数的“穿线图”,要注意什么呢?
答:掌握“一次函数”型、“二次函数”型、“指数函数”型常见模型,画“穿线图”思考以下问题:
① 导函数是否存在零点;
② 若存在,有几个零点呢?若有两个以上,哪个零点大?
③ 零点是否在定义域内?
(4) 怎么做到准确的分类讨论呢?
答:① 熟悉模型,确定分类讨论的标准;
② 做到分类讨论“不漏不重”,把每项分类看成一个集合,每个集合的交集为空集则“不重”,所有集合的并集为参数的全集则为“不漏”.
各模型分类讨论的标准
分类讨论要确定每步分类的标准,做到有根有据.
“一次函数”型:是否一次函数,直线斜率大于0还是小于0,函数零点与定义域端点的大小;
“二次函数”型:确定是否二次函数,开口方向,判别式(是否有零点),零点比较大小,零点与定义域端点的大小;
“指数函数”型:是否存在零点;利用导函数正负性的等价可转化为二次函数讨论.
【例】 利用导数的方法求函数\(f(x)= \dfrac{a}{2} x^2-x\)的单调性.
解 \(f'(x)=ax-1\),
① 当\(a=0\)时,\(f'(x)=-1<0\),\(f(x)\)在\(R\)上递减;
② 当\(a>0\)时,令\(f'(x)=ax-1>0\),解得\(x> \dfrac{1}{a}\);令\(f'(x)=ax-1<0\),解得\(x< \dfrac{1}{a}\);
所以\(f(x)\)在\(\left(-\infty, \dfrac{1}{a}\right)\)上递减;在\(\left(\dfrac{1}{a},+\infty\right)\)上递增;
③ 当\(a<0\)时,令\(f'(x)=ax-1>0\),解得\(x< \dfrac{1}{a}\);令\(f'(x)=ax-1<0\),解得\(x> \dfrac{1}{a}\);
所以\(f(x)\)在\(\left(\dfrac{1}{a},+\infty\right)\)上递减;在\(\left(-\infty, \dfrac{1}{a}\right)\)上递增.
解不等式\(ax-1>0\)时,不能想当然:\(x> \dfrac{1}{a}\);要分\(a=0\),\(a>0\),\(a<0\)三种情况讨论.
也可以借助导函数“穿线图”的想法(研究导函数的在各区间的正负),得到相同结果.
\(a=0\)时 | \(a>0\)时 | \(a<0\)时 | |
---|---|---|---|
导函数“穿线图” | |||
原函数单调性 | 在\(R\)上递减 | 在\(\left(-\infty, \dfrac{1}{a}\right)\)上递减 \(\left(\dfrac{1}{a},+\infty\right)\)上递增 |
在\(\left(\dfrac{1}{a},+\infty\right)\)上递减 在\(\left(-\infty, \dfrac{1}{a}\right)\)上递增 |
基本方法
情况1 一次函数型
【典题1】 求函数\(f(x)=xe^{kx}\)的单调区间.
解析 \(f^{\prime}(x)=e^{k x}+k x e^{k x}=e^{k x}(k x+1)\)
令\(f'(x)=0\),即\(kx+1=0\) (对\(y=kx+1\)的函数类型讨论)
(1)若\(k=0\)时,\(f'(x)=1>0\),\(f(x)\)在\(R\)上为增函数,
(2)若\(k≠0\)时,则由\(kx+1=0\)得\(x=- \dfrac{1}{k}\) (需要对\(y=kx+1\)的斜率正负讨论)
① 若\(k>0\)时,
当\(x<- \dfrac{1}{k}\)时,\(f'(x)<0\),\(f(x)\)递减;当\(x>- \dfrac{1}{k}\)时,\(f'(x)>0\),\(f(x)\)递增;
② 当\(k<0\)时,
当\(x<- \dfrac{1}{k}\)时,\(f'(x)>0\),\(f(x)\)递增;当\(x<- \dfrac{1}{k}\)时,\(f'(x)<0\),\(f(x)\)递减;
综上所述:
若\(k=0\),\(f(x)\)在\(R\)上为增函数;
若\(k>0\),则\(f(x)\)在\(\left(-\infty,-\dfrac{1}{k}\right)\)上为减函数,在\(\left(-\dfrac{1}{k},+\infty\right)\)上为增函数;
若\(k<0\),则\(f(x)\)在\(\left(-\infty,-\dfrac{1}{k}\right)\)上为增函数,在\(\left(-\dfrac{1}{k},+\infty\right)\)上为减函数.
点拨 对导函数是一次函数型\(f'(x)=kx+b\),要分\(k=0\),\(k>0\),\(k<0\)三种情况讨论.
【巩固练习】
1.求函数\(f(x)=mxe^x-e^x\)(\(m∈R\),\(e\)是自然对数的底数)的单调性.
参考答案
- 答案 若\(m=0\)时,\(f(x)\)在\(R\)上单调递减;
若\(m>0\)时,\(f(x)\)在\(\left(\dfrac{1}{m}-1,+\infty\right)\)上单调递增,在\(\left(-\infty, \dfrac{1}{m}-1\right)\)上单调递减;
若\(m<0\)时,\(f(x)\)在\(\left(\dfrac{1}{m}-1,+\infty\right)\)单调递减,在\(\left(-\infty, \dfrac{1}{m}-1\right)\)单调递增.
解析 \(f'(x)=m(e^x+xe^x )-e^x=(mx+m-1)e^x\),
(1)若\(m=0\)时,则\(f'(x)=-e^x<0\),则\(f(x)\)在\(R\)上单调递减,
(2)若\(m>0\)时,当\(x \in\left(\dfrac{1}{m}-1,+\infty\right)\)时,\(f'(x)>0\),函数单调递增,
\(x \in\left(-\infty, \dfrac{1}{m}-1\right)\)时,\(f'(x)<0\),函数单调递减;
(3)若\(m<0\)时,当\(x \in\left(\dfrac{1}{m}-1,+\infty\right)\)时,\(f'(x)<0\),函数单调递减,
\(x \in\left(-\infty, \dfrac{1}{m}-1\right)\)时,\(f'(x)>0\),函数单调递增.
情况2 二次函数型
【典题1】 求函数\(f(x)=\dfrac{x^3}{3}-\dfrac{a+2}{2} x^2+2 a x+1\)的单调性.
解析 \(f'(x)=x^2-(a+2)x+2a=(x-2)(x-a)\),
(求导后因式分解,确定导函数是否存在零点,若有,是多少,有几个?)
(1)若\(a=2\)时,\(f(x)\)在\(R\)上递增;
(2)若\(a>2\)时,
当\(2<x<a\)时,\(f'(x)<0\),\(f(x)\)递减;
当\(x>a\)或\(x<2\)时,\(f'(x)>0\),\(f(x)\)递增;
(3)若\(a<2\)时,
当\(a<x<2\)时,\(f'(x)<0\),\(f(x)\)递减;
当\(x>2\)或\(x<a\)时,\(f'(x)>0\),\(f(x)\)递增.
点拨 导函数\(f'(x)=(x-a)(x-b)\)有零点,要分\(a=b\),\(a>0\),\(a<b\)三种情况讨论,
再结合导函数的穿线图进行分析.
【典题2】 若函数\(f(x)=a x+\dfrac{2}{x}+\ln x(a \geq 0)\),求函数\(f(x)\)的单调区间.
解析 \(f^{\prime}(x)=a-\dfrac{2}{x^2}+\dfrac{1}{x}=\dfrac{a x^2+x-2}{x^2}(x>0)\),
令\(g(x)=ax^2+x-2\)(这不一定是二次函数,需要讨论函数类型)
① 若\(a=0\),\(g(x)=x-2\),
当\(0<x<2\)时,\(g(x)<0\),\(f'(x)<0\);当\(x>2\)时,\(g(x)>0\),\(f'(x)>0\);
\(\therefore f(x)\)在\((0,2)\)上为减函数,在\((2,+∞)\)上为增函数
② 若\(a>0\),则\(∆=1+8a>0\),
由\(ax^2+x-2=0\)得\(x_1=\dfrac{-1-\sqrt{1+8 a}}{2 a}<0\), \(x_2=\dfrac{-1+\sqrt{1+8 a}}{2 a}>0\),
(作出 \(g(x)=ax^2+x-2\)的图像,由图像可知)
\(f(x)\)在\((0,x_2)\)上为减函数,在\((x_2,+∞)\)上为增函数.
综上所述:
\(a=0\)时,\(f(x)\)在\((0,2)\)上为减函数,在\((2,+∞)\)上为增函数
\(a>0\)时,\(f(x)\)在\(\left(0, \dfrac{-1+\sqrt{1+8 a}}{2 a}\right)\)上为减函数,在\(\left(\dfrac{-1+\sqrt{1+8 a}}{2 a},+\infty\right)\)上为增函数.
点拨 对于导函数\(f'(x)=ax^2+bx+c\)中二次项系数\(a\)不确定,要分\(a=0\),\(a>0\),\(a<0\)三种情况讨论;导函数\(f'(x)=ax^2+bx+c\)中若不能因式分解,由于不确定是否存在零点,要分\(∆=0\),\(∆>0\),\(∆<0\)三种情况讨论.
【巩固练习】
1.求函数\(f(x)= \dfrac{1}{3} x^3+ \dfrac{a}{2} x^2-2ax+1\)的单调性.
2.已知函数\(f(x)=p\ln x+(p-1) x^2+1\), 当\(p>0\)时,讨论函数\(f(x)\)的单调性.
参考答案
-
答案 当\(-2<a<0\)时, \(f(x)\)在\(R\)上递增;
当\(a<-2\)或\(a>0\)时,\(f(x)\)在\(\left(\dfrac{-a-\sqrt{4 a^2+8 a}}{2}, \dfrac{-a+\sqrt{4 a^2+8 a}}{2}\right)\)上递减,
在 \(\left(-\infty, \dfrac{-a-\sqrt{4 a^2+8 a}}{2}\right)\), \(\left(\dfrac{-a+\sqrt{4 a^2+8 a}}{2},+\infty\right)\)递增.
解析 \(f'(x)=x^2+ax-2a\),其判别式为\(∆=4a^2+8a\),
若\(∆≤0\),即\(-2<a<0\)时,\(f'(x)>0\),\(f(x)\)在\(R\)上递增;
若\(∆≤0\),即\(a<-2\)或\(a>0\)时,
令\(f'(x)=0\),解得\(x_1=\dfrac{-a-\sqrt{4 a^2+8 a}}{2}\)或\(x_2=\dfrac{-a+\sqrt{4 a^2+8 a}}{2}\),其中\(x_2>x_1\),
当\(x_1<x<x_2\)时,\(f'(x)<0\), \(f(x)\)递减;
当\(x>x_2\)或\(x<x_1\)时,\(f'(x)>0\),\(f(x)\)递增.
综上所述,当\(-2<a<0\)时, \(f(x)\)在\(R\)上递增;
当\(a<-2\)或\(a>0\)时,\(f(x)\)在\(\left(\dfrac{-a-\sqrt{4 a^2+8 a}}{2}, \dfrac{-a+\sqrt{4 a^2+8 a}}{2}\right)\)上递减,
在 \(\left(-\infty, \dfrac{-a-\sqrt{4 a^2+8 a}}{2}\right)\), \(\left(\dfrac{-a+\sqrt{4 a^2+8 a}}{2},+\infty\right)\)递增. -
答案 当\(p≥1\)时,\(f(x)\)在\((0,+∞)\)单调递增;
当\(0<p<1\)时,\(f(x)\)在\(\left(0, \sqrt{\dfrac{p}{2(1-p)}}\right)\)单调递增,在\(\left(\sqrt{\dfrac{p}{2(1-p)}},+\infty\right)\)单调递减.
解析 \(f(x)\)的定义域为\((0,+∞)\),
\(f^{\prime}(x)=\dfrac{p}{x}+2(p-1) x=\dfrac{2(p-1) x^2+p}{x}\),
(1)若\(p=1\)时,\(f'(x)= \dfrac{1}{x}>0\),故\(f(x)\)在\((0,+∞)\)单调递增;
(2)若\(p≠1\)时,
①若\(p>1\)时,\(f'(x)>0\),故\(f(x)\)在\((0,+∞)\)单调递增;
②若\(0<p<1\)时,令\(f'(x)=0\),解得\(x=\sqrt{\dfrac{p}{2(1-p)}}\),
则当\(x \in\left(0, \sqrt{\dfrac{p}{2(1-p)}}\right)\)时,\(f'(x)>0\); \(x \in\left(\sqrt{\dfrac{p}{2(1-p)}},+\infty\right)\)时,\(f'(x)<0\).
故\(f(x)\)在\(\left(0, \sqrt{\dfrac{p}{2(1-p)}}\right)\)单调递增,在\(\left(\sqrt{\dfrac{p}{2(1-p)}},+\infty\right)\)单调递减.
综上所述
当\(p≥1\)时,\(f(x)\)在\((0,+∞)\)单调递增;
当\(0<p<1\)时,\(f(x)\)在\(\left(0, \sqrt{\dfrac{p}{2(1-p)}}\right)\)单调递增,在\(\left(\sqrt{\dfrac{p}{2(1-p)}},+\infty\right)\)单调递减.
情况3 指数函数型
【典题1】 已知函数\(f(x)=e^x+ax\)求函数的单调区间.
解析 \(f'(x)=e^x+a\),
(1)若\(a≥0\)时,\(f'(x)>0\),\(f(x)\)在\(R\)上递增;
(2)若\(a<0\)时,令\(f(x)=0\),解得\(x=\ln (-a)\),
(此时\(f'(x)=e^x+a\)与\(y=x-\ln (-a)\)的符号是一致的)
当\(x>\ln (-a)\)时,\(f'(x)>0\),\(f(x)\)递增;
当\(x<\ln (-a)\)时,\(f'(x)<0\), \(f(x)\)递减.
综上所述:
若\(a≥0\)时,\(f(x)\)在\(R\)上递增;
若\(a<0\)时,\(f(x)\)在\((\ln (-a),+∞)\)递增,\(f(x)\)在\((-∞,\ln (-a))\)递减.
【巩固练习】
1.讨论\(f(x)=e^{x+a}+ax\)的单调性.
2.求函数\(f(x)= \dfrac{a}{2} x^2+xe^x+ax(a∈R)\)的单调性.
参考答案
-
答案 当\(a≥0\)时,\(f(x)\)在\((-∞,+∞)\)上单调递增;
当\(a<0\)时,\(f(x)\)在\((-∞,-a+\ln (-a))\)上单调递减,
在\((-a+\ln (-a),+∞)\)上单调递增.
解析 \(f'(x)=e^{x+a}+a\),\(x∈R\).\(f'(x)\)在\(R\)上单调递增.
当\(a≥0\)时,\(f'(x)>0\),\(f(x)\)在\((-∞,+∞)\)上单调递增;
当\(a<0\)时,\(f'(x)=0⇔x=-a+\ln (-a)\),
\(f'(x)<0⇔x<-a+\ln (-a)\),
\(f'(x)>0⇔x>-a+\ln (-a)\),
\(\therefore f(x)\)在\((-∞,-a+\ln (-a))\)上单调递减,在\((-a+\ln (-a),+∞)\)上单调递增.
综上所述:
当\(a≥0\)时,\(f(x)\)在\((-∞,+∞)\)上单调递增;
当\(a<0\)时,\(f(x)\)在\((-∞,-a+\ln (-a))\)上单调递减,在\((-a+\ln (-a),+∞)\)上单调递增. -
答案 当\(a≥0\)时,\(f(x)\)在\((-∞,-1)\)递减,在\((-1,+∞)\)递增,
当\(-\dfrac{1}{e}<a<0\)时,\(f(x)\)在\((\ln (-a),-1)\)递减,在\((-∞,\ln (-a))\),\((-1,+∞)\)递增,
当\(a=-\dfrac{1}{e}\)时,\(f(x)\)在\(R\)递增,
当\(a<-\dfrac{1}{e}\)时,\(f(x)\)在\((-1,\ln (-a))\)递减,在\((-∞,-1)\),\((\ln (-a),+∞)\)递增.
解析 \(f'(x)=ax+e^x+xe^x+a=e^x (x+1)+a(x+1)=(x+1)(e^x+a)\),
(1)若\(a≥0\)时,\(e^x+a>0\)
当\(x<-1\)时,\(f'(x)<0\);当\(x>-1\)时,\(f'(x)>0\);
(2)若\(a<0\)时,由\(f'(x)=0\),解得\(x_1=-1\)或\(x_2=\ln (-a)\),
①若\(a=-\dfrac{1}{e}\)时,则\(\ln (-a)=-1⇒x_1=x_2\),\(f'(x)≥0\)恒成立,
故\(f(x)\)在\(R\)递增;
②若\(-\dfrac{1}{e}<a<0\),则\(\ln (-a)<-1⇒x_1<x_2\),
当\(\ln (-a)<x<-1\)时,\(f'(x)<0\),\(f(x)\)递减;
当\(x<\ln (-a)\)或\(x>-1\)时,\(f'(x)>0\),\(f(x)\)递增.
③若\(a<-\dfrac{1}{e}\),则\(\ln (-a)>-1⇒x_1>x_2\),
当\(-1<x<\ln (-a)\)时,\(f'(x)<0\),\(f(x)\)递减;
当\(x<-1\)或\(x>\ln (-a)\)时,\(f'(x)>0\),\(f(x)\)递增.
综上,
当\(a≥0\)时,\(f(x)\)在\((-∞,-1)\)递减,在\((-1,+∞)\)递增,
当\(-\dfrac{1}{e}<a<0\)时,\(f(x)\)在\((\ln (-a),-1)\)递减,在\((-∞,\ln (-a))\),\((-1,+∞)\)递增,
当\(a=-\dfrac{1}{e}\)时,\(f(x)\)在\(R\)递增,
当\(a<-\dfrac{1}{e}\)时,\(f(x)\)在\((-1,\ln (-a))\)递减,在\((-∞,-1)\),\((\ln (-a),+∞)\)递增.
分层练习
【A组---基础题】
1.求函数\(f(x)=a\ln x-ax-3\)的单调区间.
2.讨论函数\(f(x)=x^3+ax^2+x+1\)的单调区间.
3.求函数\(f(x)=ax^2+(2-a)\ln x+2\)的单调性.
4.讨论函数\(f(x)=(a+1)\ln x+ax^2+1\)的单调性.
5.求函数\(f(x)=- \dfrac{1}{2} a(x-1)^2+(x-2) e^x (a>0)\)的单调性.
6.求函数\(f(x)=\ln x-(a+2)x+ax^2 (a∈R)\)的单调区间.
7.求函数\(f(x)= \dfrac{a}{2} x^2+xe^x+ax(a∈R)\)的单调性.
参考答案
-
答案 若\(a=0\),函数不具有单调性;
若\(a>0\),函数\(f(x)\)在\((0,1)\)上单调递增,在\([1,+∞)\)上单调递减;
若\(a<0\),函数\(f(x)\)在\((0,1)\)上单调递减,在\([1,+∞)\)上单调递增.
解析 易知,函数的定义域为\((0,+∞)\),
因为\(f^{\prime}(x)=\dfrac{a}{x}-a=\dfrac{a(1-x)}{x}\).
若\(a=0\),则\(f'(x)=0\),此时原函数不具有单调性;
若\(a>0\),当\(x∈(0,1)\)时,\(f'(x)>0\),此时函数\(f(x)\)为增函数,
当\(x∈[1,+∞)\)时,\(f'(x)<0\),此时函数\(f(x)\)为减函数;
若\(a<0\),当\(x∈(0,1)\)时,\(f'(x)<0\),此时函数\(f(x)\)为减函数,
当\(x∈[1,+∞)\)时,\(f'(x)>0\),此时函数\(f(x)\)为增函数.
综上所述:
若\(a=0\),函数不具有单调性;
若\(a>0\),函数\(f(x)\)在\((0,1)\)上单调递增,在\([1,+∞)\)上单调递减;
若\(a<0\),函数\(f(x)\)在\((0,1)\)上单调递减,在\([1,+∞)\)上单调递增. -
答案 当 \(-\sqrt{3}≤a≤\sqrt{3}\)时,\(f(x)\)在\(R\)上为增函数,
当\(a<-\sqrt{3}\)或\(a>\sqrt{3}\)时,\(f(x)\)在 \(\left(-\infty, \dfrac{-a-\sqrt{a^2-3}}{3}\right)\), \(\left(\dfrac{-a+\sqrt{a^2-3}}{3},+\infty\right)\)上为增函数,在 \(\left(\dfrac{-a-\sqrt{a^2-3}}{3}, \dfrac{-a+\sqrt{a^2-3}}{3}\right)\)上为减函数.
解析 \(f'(x)=3x^2+2ax+1\),\(∆=4a^2-12\), (注意这里根的存在需要讨论)
①若\(∆=4a^2-12≤0\),即\(-\sqrt{3}≤a≤\sqrt{3}\),
则\(f(x)\)在\(R\)上为增函数;
②若\(∆=4a^2-12>0\),即\(a<-\sqrt{3}\) 或\(a>\sqrt{3}\),
由\(f'(x)=0\)得\(\chi_1=\dfrac{-a-\sqrt{a^2-3}}{3}\), \(x_2=\dfrac{-a+\sqrt{a^2-3}}{3}\),
\(f(x)\)在 \(\left(-\infty, \dfrac{-a-\sqrt{a^2-3}}{3}\right)\)或 \(\left(\dfrac{-a+\sqrt{a^2-3}}{3},+\infty\right)\)上为增函数,
在 \(\left(\dfrac{-a-\sqrt{a^2-3}}{3}, \dfrac{-a+\sqrt{a^2-3}}{3}\right)\)上为减函数.
综上所述:
当 \(-\sqrt{3}≤a≤\sqrt{3}\)时,\(f(x)\)在\(R\)上为增函数,
当\(a<-\sqrt{3}\)或\(a>\sqrt{3}\)时,\(f(x)\)在 \(\left(-\infty, \dfrac{-a-\sqrt{a^2-3}}{3}\right)\), \(\left(\dfrac{-a+\sqrt{a^2-3}}{3},+\infty\right)\)上为增函数,在 \(\left(\dfrac{-a-\sqrt{a^2-3}}{3}, \dfrac{-a+\sqrt{a^2-3}}{3}\right)\)上为减函数. -
答案 \(a<0\)时,函数\(f(x)\)在 \(\left(0, \sqrt{\dfrac{a-2}{2 a}}\right)\)上单调递增,在\(\left(\sqrt{\dfrac{a-2}{2 a}},+\infty\right)\)单调递减.
\(0≤a≤2\)时,函数在\((0,+∞)\)上单调递增,
\(a>2\)时,函数\(f(x)\)在 \(\left(0, \sqrt{\dfrac{a-2}{2 a}}\right)\)上单调递减,在\(\left(\sqrt{\dfrac{a-2}{2 a}},+\infty\right)\)单调递增.
解析 依题意,函数\(f(x)\)的定义域为\((0,+∞)\),
\(f^{\prime}(x)=2 a x+\dfrac{2-a}{x}=\dfrac{2 a x^2+2-a}{x}\),
①\(a<0\)时,令\(2ax^2+2-a=0\),可得\(x^2=\dfrac{a-2}{2 a}>0\),
\(x=\sqrt{\dfrac{a-2}{2 a}}\),(负值舍去),
当\(x \in\left(0, \sqrt{\dfrac{a-2}{2 a}}\right)\)时,\(f'(x)>0\),当\(x \in\left(\sqrt{\dfrac{a-2}{2 a}},+\infty\right)\)时,\(f'(x)<0\),
故函数\(f(x)\)在 \(\left(0, \sqrt{\dfrac{a-2}{2 a}}\right)\)上单调递增,在 \(\left(\sqrt{\dfrac{a-2}{2 a}},+\infty\right)\)单调递减.
②\(0≤a≤2\)时,\(f'(x)>0\)恒成立,函数在\((0,+∞)\)上单调递增,
③\(a>2\)时,当\(x \in\left(0, \sqrt{\dfrac{a-2}{2 a}}\right)\)时,\(f'(x)<0\),当\(x \in\left(\sqrt{\dfrac{a-2}{2 a}},+\infty\right)\)时,\(f'(x)>0\),
故函数\(f(x)\)在 \(\left(0, \sqrt{\dfrac{a-2}{2 a}}\right)\)上单调递减,在\(\left(\sqrt{\dfrac{a-2}{2 a}},+\infty\right)\)单调递增.
综上, \(a<0\)时,函数\(f(x)\)在 \(\left(0, \sqrt{\dfrac{a-2}{2 a}}\right)\)上单调递增,在\(\left(\sqrt{\dfrac{a-2}{2 a}},+\infty\right)\)单调递减.
\(0≤a≤2\)时,函数在\((0,+∞)\)上单调递增,
\(a>2\)时,函数\(f(x)\)在 \(\left(0, \sqrt{\dfrac{a-2}{2 a}}\right)\)上单调递减,在\(\left(\sqrt{\dfrac{a-2}{2 a}},+\infty\right)\)单调递增. -
答案 当\(a≥0\)时,\(f(x)\)在\((0,+∞)\)上递增;
当\(a≤-1\)时,\(f(x)\)在\((0,+∞)\)上递减;
当\(-1<a<0\)时,\(f(x)\)在\(\left(0, \sqrt{-\dfrac{a+1}{2 a}}\right)\)上单调递增,在\(\left(\sqrt{-\dfrac{a+1}{2 a}},+\infty\right)\)上单调递减.
解析 \(f(x)\)的定义域为\((0,+∞)\), \(f^{\prime}(x)=\dfrac{a+1}{x}+2 a x=\dfrac{2 a x^2+a+1}{x}\).
(1)当\(a=0\)时,\(f'(x)= \dfrac{1}{x}>0\),\(f(x)\)在\((0,+∞)\)上递增;
(2)当 时,
①若\(a>0\),\(f'(x)>0\),\(f(x)\)在\((0,+∞)\)上递增;
②若\(a<0\)
ⅰ若\(a≤-1\),\(f'(x)<0\),\(f(x)\)在\((0,+∞)\)上递减;
ⅱ若\(-1<a<0\),令\(f'(x)=0\),解得\(x=\sqrt{-\dfrac{a+1}{2 a}}\),
则当\(x \in\left(0, \sqrt{-\dfrac{a+1}{2 a}}\right)\)时,\(f'(x)>0\);当 \(x \in\left(\sqrt{-\dfrac{a+1}{2 a}},+\infty\right)\)时,\(f'(x)<0\);
故\(f(x)\)在\(\left(0, \sqrt{-\dfrac{a+1}{2 a}}\right)\)上单调递增,在\(\left(\sqrt{-\dfrac{a+1}{2 a}},+\infty\right)\)上单调递减.
综上所述;
当\(a≥0\)时,\(f(x)\)在\((0,+∞)\)上递增;
当\(a≤-1\)时,\(f(x)\)在\((0,+∞)\)上递减;
当\(-1<a<0\)时,\(f(x)\)在\(\left(0, \sqrt{-\dfrac{a+1}{2 a}}\right)\)上单调递增,在\(\left(\sqrt{-\dfrac{a+1}{2 a}},+\infty\right)\)上单调递减. -
答案 当\(0<a<e\)时,\(f(x)\)在\((1,+∞)\),\((-∞,\ln a)\)上单调递增,在\((\ln a,1)\)上单调递减;
当\(a=e\)时,\(f(x)\)在\(R\)上单调递增;
当\(a>e\)时,\(f(x)\)在\((\ln a,+∞)\),\((-∞,1)\)上单调递增,在\((1,\ln a)\)上单调递减.
解析 (1) \(f'(x)=-a(x-1)+(x-1)e^x=(x-1)(e^x-a)\),
\(∵a>0\),由\(f'(x)=0\)可得\(x=1\)或\(x=\ln a\),
(i)当\(0<a<e\)时,\(1>\ln a\),
在\((1,+∞)\),\((-∞,\ln a)\)上,\(f'(x)>0\),\(f(x)\)单调递增,
在\((\ln a,1)\)上,\(f'(x)<0\),\(f(x)\)单调递减;
(ii)当\(a=e\)时,\(\ln e=1\),\(f'(x)>0\)在\(R\)上恒成立,即\(f(x)\)在\(R\)上单调递增;
(iii)当\(a>e\)时,\(\ln a>1\),
在\((\ln a,+∞)\),\((-∞,1)\)上,\(f'(x)>0\),\(f(x)\)单调递增,
在\((1,\ln a)\)上,\(f'(x)<0\),\(f(x)\)单调递减;
综上所述,当\(0<a<e\)时,\(f(x)\)在\((1,+∞)\),\((-∞,\ln a)\)上单调递增,在\((\ln a,1)\)上单调递减;
当\(a=e\)时,\(f(x)\)在\(R\)上单调递增;
当\(a>e\)时,\(f(x)\)在\((\ln a,+∞)\),\((-∞,1)\)上单调递增,在\((1,\ln a)\)上单调递减. -
答案 当\(a≤0\)时,\(f(x)\)在\(\left(0, \dfrac{1}{2}\right)\)内单调递增,在 \(\left(\dfrac{1}{2},+\infty\right)\)内单调递减;
当\(0<a<2\)时,\(f(x)\)在\(\left(0, \dfrac{1}{2}\right)\),\(\left(\dfrac{1}{a},+\infty\right)\)内单调递增,在\(\left(\dfrac{1}{2}, \dfrac{1}{a}\right)\)内单调递减;
当\(a=2\)时,所以\(f(x)\)在\((0,+∞)\)上单调递增;
当\(a>2\)时,\(f(x)\)在 \(\left(0, \dfrac{1}{a}\right)\), \(\left(\dfrac{1}{2},+\infty\right)\)内单调递增,在\(\left(\dfrac{1}{a}, \dfrac{1}{2}\right)\)内单调递减.
解析 因为\(f(x)=\ln x-(a+2)x+ax^2\),定义域为\((0,+∞)\),
所以\(f^{\prime}(x)=\dfrac{1}{x}-(a+2)+2 a x=\dfrac{2 a x^2-(a+2) x+1}{x}=\dfrac{(2 x-1)(a x-1)}{x}\).
①当\(a≤0\)时,\(f(x)\)与\(f'(x)\)在\((0,+∞)\)上的变化情况如下:
\(x\) | \(\left(0, \dfrac{1}{2}\right)\) | \(\dfrac{1}{2}\) | \(\left(\dfrac{1}{2},+\infty\right)\) |
---|---|---|---|
\(f'(x)\) | \(+\) | \(0\) | \(-\) |
\(f(x)\) | \(↗\) | \(↘\) |
所以\(f(x)\)在\(\left(0, \dfrac{1}{2}\right)\)内单调递增,在 \(\left(\dfrac{1}{2},+\infty\right)\)内单调递减.
②当\(0<a<2\)时,\(f(x)\)与\(f'(x)\)在\((0,+∞)\)上的变化情况如下:
\(x\) | \(\left(0, \dfrac{1}{2}\right)\) | \(\dfrac{1}{2}\) | \(\left(\dfrac{1}{2}, \dfrac{1}{a}\right)\) | \(\dfrac{1}{a}\) | \(\left(\dfrac{1}{a},+\infty\right)\) |
---|---|---|---|---|---|
\(f'(x)\) | \(+\) | \(0\) | \(-\) | \(0\) | \(+\) |
\(f(x)\) | \(↗\) | \(↘\) | \(↗\) |
所以\(f(x)\)在\(\left(0, \dfrac{1}{2}\right)\),\(\left(\dfrac{1}{a},+\infty\right)\)内单调递增,在\(\left(\dfrac{1}{2}, \dfrac{1}{a}\right)\)内单调递减.
③当\(a=2\)时,\(f'(x)≥0\),所以\(f(x)\)在\((0,+∞)\)上单调递增.
④当a>2时,\(f(x)\)与\(f'(x)\)在\((0,+∞)\)上的变化情况如下:
\(x\) | \(\left(0, \dfrac{1}{a}\right)\) | \(\dfrac{1}{a}\) | \(\left(\dfrac{1}{a}, \dfrac{1}{2}\right)\) | \(\dfrac{1}{2}\) | \(\left(\dfrac{1}{2},+\infty\right)\) |
---|---|---|---|---|---|
\(f'(x)\) | \(+\) | \(0\) | \(-\) | \(0\) | \(+\) |
\(f(x)\) | \(↗\) | \(↘\) | \(↗\) |
所以\(f(x)\)在 \(\left(0, \dfrac{1}{a}\right)\), \(\left(\dfrac{1}{2},+\infty\right)\)内单调递增,在\(\left(\dfrac{1}{a}, \dfrac{1}{2}\right)\)内单调递减.
综上所述,
当\(a≤0\)时,\(f(x)\)在\(\left(0, \dfrac{1}{2}\right)\)内单调递增,在 \(\left(\dfrac{1}{2},+\infty\right)\)内单调递减;
当\(0<a<2\)时,\(f(x)\)在\(\left(0, \dfrac{1}{2}\right)\),\(\left(\dfrac{1}{a},+\infty\right)\)内单调递增,在\(\left(\dfrac{1}{2}, \dfrac{1}{a}\right)\)内单调递减;
当\(a=2\)时,所以\(f(x)\)在\((0,+∞)\)上单调递增;
当\(a>2\)时,\(f(x)\)在 \(\left(0, \dfrac{1}{a}\right)\), \(\left(\dfrac{1}{2},+\infty\right)\)内单调递增,在\(\left(\dfrac{1}{a}, \dfrac{1}{2}\right)\)内单调递减.
- 答案 当\(a≥0\)时,\(f(x)\)在\((-∞,-1)\)递减,在\((-1,+∞)\)递增,
当\(-\dfrac{1}{e}<a<0\)时,\(f(x)\)在\((\ln (-a),-1)\)递减,在\((-∞,\ln (-a))\),\((-1,+∞)\)递增,
当\(a=-\dfrac{1}{e}\)时,\(f(x)\)在\(R\)递增,
当\(a<-\dfrac{1}{e}\)时,\(f(x)\)在\((-1,\ln (-a))\)递减,在\((-∞,-1)\),\((\ln (-a),+∞)\)递增.
解析 \(f'(x)=ax+e^x+xe^x+a=e^x (x+1)+a(x+1)=(x+1)(e^x+a)\),
(1)若\(a≥0\)时,\(e^x+a>0\)
当\(x<-1\)时,\(f'(x)<0\);当\(x>-1\)时,\(f'(x)>0\);
(2)若\(a<0\)时,由\(f'(x)=0\),解得\(x_1=-1\)或\(x_2=\ln (-a)\),
①若\(a=-\dfrac{1}{e}\)时,则\(\ln (-a)=-1⇒x_1=x_2\),\(f'(x)≥0\)恒成立,故\(f(x)\)在\(R\)递增;
②若\(-\dfrac{1}{e}<a<0\),则\(\ln (-a)<-1⇒x_1<x_2\),
当\(\ln (-a)<x<-1\)时,\(f'(x)<0\),\(f(x)\)递减;
当\(x<\ln (-a)\)或\(x>-1\)时,\(f'(x)>0\),\(f(x)\)递增.
③若\(a<-\dfrac{1}{e}\),则\(\ln (-a)>-1⇒x_1>x_2\),
当\(-1<x<\ln (-a)\)时,\(f'(x)<0\),\(f(x)\)递减;
当\(x<-1\)或\(x>\ln (-a)\)时,\(f'(x)>0\),\(f(x)\)递增.
综上,
当\(a≥0\)时,\(f(x)\)在\((-∞,-1)\)递减,在\((-1,+∞)\)递增,
当\(-\dfrac{1}{e}<a<0\)时,\(f(x)\)在\((\ln (-a),-1)\)递减,在\((-∞,\ln (-a))\),\((-1,+∞)\)递增,
当\(a=-\dfrac{1}{e}\)时,\(f(x)\)在\(R\)递增,
当\(a<-\dfrac{1}{e}\)时,\(f(x)\)在\((-1,\ln (-a))\)递减,在\((-∞,-1)\),\((\ln (-a),+∞)\)递增.
【B组---提高题】
1.函数 \(f(x)=x-\dfrac{2 a}{x}-(a+2) \ln x\)的单调区间.
2.求\(g(x)=e^x+\cos x-ax-2(x≥0)\)的单调性.
参考答案
-
答案 当\(a<0\)时,\(f(x)\)递减区间为\((0,2)\),\(f(x)\)递增区间为\((2,+∞)\);
当\(a=2\)时,\(f(x)\)递增区间为\((0,+∞)\);
当\(a>2\)时,\(f(x)\)递增区间为\((0,2)\)或\((a,+∞)\),\(f(x)\)递减区间为\((2,a)\);
当\(0<a<2\)时,\(f(x)\)递增区间为\((0,a)\)或\((2,+∞)\),\(f(x)\)递减区间\((a,2)\).
解析 \(f(x)\)的定义域为\((0,+∞)\),
\(f^{\prime}(x)=1+\dfrac{2 a}{x^2}-\dfrac{a+2}{x}=\dfrac{x^2-(a+2) x+2 a}{x^2}=\dfrac{(x-2)(x-a)}{x^2}\),
(求导后通分、因式分解,确保有零点存在)
令\(f'(x)=0\),得\(x_1=2\),\(x_2=a\),
(对导函数零点\(2\)、\(a\)与定义域端点\(0\)三者比较大小,先比较\(a\)与\(0\)的大小,分\(a>0\)和\(a≤0\))
(1)若\(a≤0\)时,
当\(0<x<2\)时,\(f'(x)<0\),\(f(x)\)递减;
当\(x>2\)时,\(f'(x)>0\),\(f(x)\)递增;
(2)若\(a>0\)时,
(判断导函数零点\(2\)、\(a\)的大小,分\(a=2\)、\(a>2\)、\(a<2\)三种情况)
①\(a=2\)时,\(f'(x)=(x-2)^2≥0\),\(f(x)\)递增;(不要遗忘零点相等的情况)
②\(a>2\)时,
当\(0<x<2\)或\(x>a\)时,\(f'(x)>0\),\(f(x)\)递增;
当\(2<x<a\)时,\(f'(x)<0\),\(f(x)\)递减;
③\(0<a<2\)时,
当\(0<x<a\)或\(x>2\)时,\(f'(x)>0\),\(f(x)\)递增;
当\(a<x<2\)时,\(f'(x)<0\),\(f(x)\)递减.
综上所述
当\(a<0\)时,\(f(x)\)递减区间为\((0,2)\),\(f(x)\)递增区间为\((2,+∞)\);
当\(a=2\)时,\(f(x)\)递增区间为\((0,+∞)\);
当\(a>2\)时,\(f(x)\)递增区间为\((0,2)\)或\((a,+∞)\),\(f(x)\)递减区间为\((2,a)\);
当\(0<a<2\)时,\(f(x)\)递增区间为\((0,a)\)或\((2,+∞)\),\(f(x)\)递减区间\((a,2)\). -
答案 当\(a≤1\)时,\(g(x)\)在\([0,+∞)\)上单调递增;
当\(a>1\)时,\(g(x)\)在\([0,+∞)\)上先减后增.
解析 \(g'(x)=e^x-\sin x-a\),
令\(p(x)=g'(x) =e^x-\sin x-a\),故\(p'(x)=e^x-\cos x\),
当\(x≥0\)时,\(p'(x)≥0\),故\(p(x)\)在\([0,+∞)\)上单调递增,
(要注意三角函数\(\sin x\)、\(\cos x\)的范围\([-1 ,1]\))
(此时 \(p(x)_{\min }=p(0)=1-a\),分析导函数是否有零点,分\(1-a≤0\)和\(1-a>0\)讨论.)
①当\(a≤1\)时,\(p(x)≥p(0)=1-a≥0\),即\(g'(x)≥0\),
故\(g(x)\)在\([0,+∞)\)上单调递增;
②当\(a>1\)时,\(p(0)=1-a<0\),且\(p(\ln (a+1))=1-\sin (\ln a(a+1))≥0\),
故存在\(x_0∈(0,\ln (a+1)]\),使得\(p(x_0)=g'(x_0)=0\),
当\(0<x<x_0\)时,\(g'(x)<0\),\(g(x)\)单调递减;
当\(x>x_0\)时,\(g'(x)>0\),\(g(x)\)单调递增.
综上所述,当\(a≤1\)时,\(g(x)\)在\([0,+∞)\)上单调递增;
当\(a>1\)时,\(g(x)\)在\([0,+∞)\)上先减后增.
【C组---拓展题】
1.已知函数\(f(x)=e^x- \dfrac{1}{2} ax^2-x\).
(1)设\(f'(x)\)是\(f(x)\)的导函数,讨论函数\(y=f'(x)\)的单调性;
(2)当\(a≤1-\dfrac{1}{e}\)时,求证:\(f(x)+x-\ln (x+1)≥1\).
参考答案
- 答案 (1)当\(a≤0\)时,\(y=f'(x)\)是\((-∞,+∞)\)上的增函数,
当\(a>0\)时,\(y=f'(x)\)在\((-∞,\ln a)\)是减函数,在\((\ln a,+∞)\)上是增函数.
(2)略.
解析 (1)由已知\(f'(x)=e^x-ax-1\),
设\(g(x)=f'(x)=e^x-ax-1\),则\(g'(x)=e^x-a\),
①当\(a≤0\)时,\(g'(x)=e^x-a>0\)在\(R\)上恒成立,
所以\(g(x)=f'(x)=e^x-a>0\)在\(R\)上恒成立,
所以\(g(x)=f'(x)\)在\((-∞,+∞)\)上单调递增,
②当\(a>0\)时,令\(g'(x)>0\)得\(x>\ln a\),\(g'(x)<0\)得\(x<\ln a\),
所以\(g(x)=f'(x)\)在\((-∞,\ln a)\)上单调递减,在\((\ln a,+∞)\)上单调递增,
综上所述,当\(a≤0\)时,\(y=f'(x)\)是\((-∞,+∞)\)上的增函数,
当\(a>0\)时,\(y=f'(x)\)在\((-∞,\ln a)\)是减函数,在\((\ln a,+∞)\)上是增函数.
(2)由(1)知,①当\(a≤0\)时,\(f'(x)=e^x-ax-1\)在\((-1,+∞)\)上单调递增,
又\(f'(0)=0\),
所以\(-1<x<0\)时,\(f'(x)<0\);\(x>0\)时,\(f'(x)>0\),
则\(f(x)\)在\((-1,0)\)上单调递减,在\((0,+∞)\)上单调递增,
所以 \(f(x)_{\min }=f(0)=1\),
②当\(0<a≤\dfrac{1}{e}\)时\(,\ln a≤-1\),
由(1)知\(f'(x)\)在\((-1,+∞)\)上单调递增,又\(f'(0)=0\),
则\(f(x)\)在\((-1,0)\)上单调递减,在\((0,+∞)\)上单调递增,
所以 \(f(x)_{\min }=f(0)=1\),
③当\(\dfrac{1}{e}<a≤1-\dfrac{1}{e}\)时,
由(1)知\(f'(x)\)在\((-1,\ln a)\)上单调递减,在\((\ln a,+∞)\)上单调递增,
且\(f'(0)=0\),\(f'(-1)=\dfrac{1}{e}+a-1≤0\),
所以\(-1≤x<0\)时,\(f'(x)<0\);\(x>0\)时,\(f'(x)>0\),
所以\(f(x)\)在\((-1,0)\)上单调递减,在\((0,+∞)\)单调递增,
则 \(f(x)_{\min }=f(0)=1\),
综上所述:函数\(f(x)\)在\([-1,+∞)\)上的最小值为\(1\),
所以\(f(x)≥1\),
要证明原不等式只需证明\(x-\ln (x+1)≥0\),
设\(h(x)=x-\ln (x+1)(x>-1)\),
所以 \(h^{\prime}(x)=1-\dfrac{1}{x+1}=\dfrac{x}{x+1}\),
则当\(-1<x<0\)时,\(h'(x)<0\);\(x>0\)时,\(h'(x)>0\),
即\(h(x)\)在\((-1,0)\)上单调递减,在\((0,+∞)\)上单调递增,
则 \(h(x)_{\min }=h(0)=0\),即\(x-\ln (x+1)≥0\),
又\(f(x)≥1\),
故\(f(x)+x-\ln (x+1)≥1\).