LG-P4264 [USACO18FEB]Teleportation S Solution
目录更好的阅读体验戳此进入
题面
数轴上存在 $ n $ 对 $ a_i, b_i $ 表示有一坨牛粪需要从 $ a_i $ 送到 $ b_i $ 并贡献 $ d_i = \vert a_i - b_i \vert $,数轴上存在一个起点为 $ 0 $,终点为 $ y $ 的便便传送门,可以在 $ 0 $ 的贡献下将牛粪从 $ 0 $ 传送到 $ y $,同样贡献为不用传送门走的距离,最小化贡献和,求最小值。
$ 1 \le n \le 10^5, -10^8 \le a_i, b_i \le 10^8 $。
Solution
这道题告诉我们,题做不出来的时候要多去去厕所,去溜达一圈之后或许就突然想明白了。。
我感觉还算是一道挺有意思的题,比较奇妙,难度适中,蓝色评的也很合理。
显然当 $ y $ 确定后对于每一对 $ a_i, b_i $ 的贡献即为 $ f(y)i = \min(\vert a_i - b_i \vert, \vert a_i \vert + \vert y - b_i \vert) $,我们的答案即为 $ \sum{i = 1}^n f(y)_i $。
此时显然如果有 $ \vert a_i - b_i \vert \lt \vert a_i \vert $,解一下就是 $ a_i \ge b_i \gt 0 \vee 0 \le a_i \lt b_i \lt 2a_i \vee 0 \gt a_i \gt b_i \gt 2a_i \vee a_i \lt b_i \lt 0 $,那么一定不走传送门,也就是选前者,这样的话对于这个 $ f(y)_i $ 就是一条直线,不过这一大坨不等式看着就很阴间,画个图吧:
观察发现剩下的可能性就只有 $ 0 \le 2a_i \lt b_i \vee b_i \lt2a_i \le 0 \vee a_i \lt 0 \lt b_i \vee b_i \lt 0 \lt a_i $ 了,而这一段区间则与 $ y $ 相关,需要额外讨论一下。
此时的原式为 $ f(y)_i = \min(\vert a_i - b_i \vert, \vert a_i \vert + \vert y - b_i \vert) $,考虑分类讨论,如在 $ 0 \le 2a_i \lt b_i $ 的条件下,原式转化为 $ \min(b_i - a_i, a_i + \vert y - b_i \vert) $,然后把 $ y $ 和 $ b_i $ 之间的关系讨论一下(这里就很简单了,不多赘述,注意一下 $ b_i \lt 2b_i - 2a_i $ 在条件下恒成立即可),最终可以写成一下柿子:
$ 0 \le 2a_i \lt b_i $:
\[f(y)_i = \left\{ \begin{array}{ll} b_i - a_i &\quad y \in (-\infty, 2a_i] \cup [2b_i - 2a_i, +\infty) \\ -y + a_i + b_i &\quad y \in (2a_i, b_i) \\ y + a_i - b_i &\quad y \in [b_i, 2b_i - 2a_i) \end{array} \right. \]然后在 $ b_i \lt2a_i \le 0 $ 同理可以推出:
$ b_i \lt2a_i \le 0 $:
\[f(y)_i = \left\{ \begin{array}{ll} a_i - b_i &\quad y \in (-\infty, 2b_i - 2a_i] \cup [2a_i, +\infty) \\ -y - a_i + b_i &\quad y \in (2b_i - 2a_i, b_i) \\ y - a_i - b_i &\quad y \in [b_i, 2a_i) \end{array} \right. \]剩下的两个区间也同理推导一下即可:
$ a_i \lt 0 \lt b_i $:
\[f(y)_i = \left\{ \begin{array}{ll} b_i - a_i &\quad y \in (-\infty, 0] \cup [2b_i, +\infty) \\ -y - a_i + b_i &\quad y \in (0, b_i) \\ y - a_i - b_i &\quad y \in [b_i, 2b_i) \end{array} \right. \]$ b_i \lt 0 \lt a_i $:
\[f(y)_i = \left\{ \begin{array}{ll} a_i - b_i &\quad y \in (-\infty, 2b_i] \cup [0, +\infty) \\ -y + a_i + b_i &\quad y \in (2b_i, b_i) \\ y + a_i - b_i &\quad y \in [b_i, 0) \end{array} \right. \]现在我们也就能确定下来每一条 $ f(y)_i $ 的形状了,都是类似下图的形状,只是 “转折点” 不同,和 $ y $ 无关的认为其没有转折点即可。
此时我们就需要考虑一下求 $ \sum_{i = 1}^nf(y)_i $ 了。
不难想到 $ O(n) $ 记录一下每一条线的 “转折点” 的位置,建立一个差分数组,然后每条线段斜率变为 $ -1 $ 之后对应位置加上 $ -1 $,斜率变为 $ 1 $ 之后加上 $ 2 $,变回与 $ y $ 相关之后再加上 $ -1 $,然后我们把差分数组做个前缀和,这样当前的前缀和数组的值就是 $ i $ 相对 $ i - 1 $ 的总答案变化量,对于 $ 0 $ 处我们认为其为 $ \sum_{i = 1}^n \vert a_i - b_i \vert $,然后在前缀和上再做一个前缀和,令其为 $ sum_i $,则不难想到答案即为 $ \min{sum_i} $,然后这里因为坐标值域范围很大,所以考虑离散化,为了写着方便,直接开一个 map
存即可,排序也省了。
至此,我们就做完了这道奇怪的大分类讨论,复杂度 $ O(n \log n) $,卡在排序上。
Code
#define _USE_MATH_DEFINES
#include <bits/extc++.h>
#define PI M_PI
#define E M_E
#define npt nullptr
#define SON i->to
#define OPNEW void* operator new(size_t)
#define ROPNEW(arr) void* Edge::operator new(size_t){static Edge* P = arr; return P++;}
using namespace std;
using namespace __gnu_pbds;
mt19937 rnd(random_device{}());
int rndd(int l, int r){return rnd() % (r - l + 1) + l;}
bool rnddd(int x){return rndd(1, 100) <= x;}
typedef unsigned int uint;
typedef unsigned long long unll;
typedef long long ll;
typedef long double ld;
template< typename T = int >
inline T read(void);
int N;
ll origin(0);
ll mn(LONG_LONG_MAX);
map < ll, ll > mp;
ll sum[310000]; int cnt(0);
void Insert(int p, int v){
if(mp.find(p) == mp.end())mp.insert({p, v});
else mp[p] += v;
}
void InsertAll(int sp1, int sp2, int sp3){
Insert(sp1, -1);
Insert(sp2, 2);
Insert(sp3, -1);
}
int main(){
N = read();
for(int i = 1; i <= N; ++i){
int a = read(), b = read();
origin += abs(a - b);
if(0 <= 2 * a && 2 * a < b)InsertAll(2 * a, b, 2 * b - 2 * a);
else if(b < 2 * a && 2 * a <= 0)InsertAll(2 * b - 2 * a, b, 2 * a);
else if(a < 0 && 0 < b)InsertAll(0, b, 2 * b);
else if(b < 0 && 0 < a)InsertAll(2 * b, b, 0);
}
ll cur(0), sum(origin); int lft(INT_MIN);
mn = origin;
for(auto v : mp){
sum += (ll)cur * (v.first - lft);
cur += v.second, lft = v.first;
mn = min(mn, sum);
}
printf("%lld\n", mn);
fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);
return 0;
}
template < typename T >
inline T read(void){
T ret(0);
short flag(1);
char c = getchar();
while(c != '-' && !isdigit(c))c = getchar();
if(c == '-')flag = -1, c = getchar();
while(isdigit(c)){
ret *= 10;
ret += int(c - '0');
c = getchar();
}
ret *= flag;
return ret;
}
UPD
update-2022_11_07 初稿
标签:LG,le,vert,int,题解,Teleportation,lt,2a,quad From: https://www.cnblogs.com/tsawke/p/16945600.html