学习隐马尔科夫模型建议先阅读《写给小白看的马尔科夫链(Markov Chain)最佳入门教程》,我们知道隐马尔科夫模型中的状态序列其实就是马尔科夫链。
隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型,它在语言识别,自然语言处理,模式识别等领域应用广泛。随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下降。但是作为一个经典的模型,学习HMM的模型和对应算法,对我们解决问题建模的能力提高以及算法思路的拓展还是很好的。本文将介绍HMM模型的基础,旨在读完对HMM有初步的认识和理解。
1. 什么样的问题需要HMM模型
首先我们来看看什么样的问题解决可以用HMM模型。使用HMM模型时我们的问题一般有这两个特征:
1)我们的问题是基于序列的,比如时间序列,或者状态序列。
2)我们的问题中有两类数据,一类序列数据是可以观测到的,即观测序列;而另一类数据是不能观察到的,即隐藏状态序列,简称状态序列。
有了这两个特征,那么这个问题一般就可以用HMM模型来尝试解决。这样的问题在实际生活中是很多的。比如:我现在在打字写博客,我在键盘上敲出来的一系列字符就是观测序列,而我实际想写的一段话就是隐藏序列,输入法的任务就是从敲入的一系列字符尽可能的猜测我要写的一段话,并把最可能的词语放在最前面让我选择,这就可以看做一个HMM模型了;再举一个,我在和你说话,我发出的一串连续的声音就是观测序列,而我实际要表达的一段话就是状态序列,你大脑的任务,就是从这一串连续的声音中判断出我最可能要表达的话的内容。
从这些例子中,我们可以发现,HMM模型可以无处不在。下面我们用精确的数学符号来表述我们的HMM模型。
2. HMM模型的定义
对于HMM模型,首先我们假设
标签:状态,必知,模型,马尔科夫,观测,HMM,序列,隐藏 From: https://blog.51cto.com/u_12853553/5896528