首页 > 其他分享 >实验五:全连接神经网络手写数字识别实验

实验五:全连接神经网络手写数字识别实验

时间:2022-11-29 00:33:24浏览次数:77  
标签:plt nn torch running 神经网络 实验 test 手写 size

实验五:全连接神经网络手写数字识别实验

【实验目的】

理解神经网络原理,掌握神经网络前向推理和后向传播方法;

掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。

【实验内容】

1.使用pytorch框架,设计一个全连接神经网络,实现Mnist手写数字字符集的训练与识别。

【实验报告要求】

修改神经网络结构,改变层数观察层数对训练和检测时间,准确度等参数的影响;
修改神经网络的学习率,观察对训练和检测效果的影响;
修改神经网络结构,增强或减少神经元的数量,观察对训练的检测效果的影响。

实验内容:

1 import torch
2 import numpy as np
3 from matplotlib import pyplot as plt
4 from torch.utils.data import DataLoader
5 from torchvision import transforms
6 from torchvision import datasets
7 import torch.nn.functional as F

 

 1 batch_size = 64
 2 learning_rate = 0.01
 3 momentum = 0.5
 4 EPOCH = 10
 5 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
 6 train_dataset = datasets.MNIST(root='./data/mnist', train=True, transform=transform, download=True)  
 7 test_dataset = datasets.MNIST(root='./data/mnist', train=False, transform=transform, download=True)  
 8 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
 9 test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
10 class Net(torch.nn.Module):
11     def __init__(self):
12         super(Net, self).__init__()
13         self.conv1 = torch.nn.Sequential(
14             torch.nn.Conv2d(1, 10, kernel_size=5),
15             torch.nn.ReLU(),
16             torch.nn.MaxPool2d(kernel_size=2),
17         )
18         self.conv2 = torch.nn.Sequential(
19             torch.nn.Conv2d(10, 20, kernel_size=5),
20             torch.nn.ReLU(),
21             torch.nn.MaxPool2d(kernel_size=2),
22         )
23         self.fc = torch.nn.Sequential(
24             torch.nn.Linear(320, 50),
25             torch.nn.Linear(50, 10),
26         )
27 
28     def forward(self, x):
29         batch_size = x.size(0)
30         x = self.conv1(x)  # 一层卷积层,一层池化层,一层激活层
31         x = self.conv2(x)  
32         x = x.view(batch_size, -1)  
33         x = self.fc(x)
34         return x 
35 #实例化模型
36 model = Net()
37 criterion = torch.nn.CrossEntropyLoss()  # 交叉熵损失
38 optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum)  # lr学习率,momentum冲量
39 
40 def train(epoch):
41     running_loss = 0.0  
42     running_total = 0
43     running_correct = 0
44     for batch_idx, data in enumerate(train_loader, 0):
45         inputs, target = data
46         optimizer.zero_grad()    
47         outputs = model(inputs)
48         loss = criterion(outputs, target)
49         loss.backward()
50         optimizer.step()
51         running_loss += loss.item()
52         # 把运行中的准确率acc算出来
53         _, predicted = torch.max(outputs.data, dim=1)
54         running_total += inputs.shape[0]
55         running_correct += (predicted == target).sum().item()
56         if batch_idx % 300 == 299:  # 不想要每一次都出loss,浪费时间,选择每300次出一个平均损失,和准确率
57             print('[%d, %5d]: loss: %.3f , acc: %.2f %%'
58                   % (epoch + 1, batch_idx + 1, running_loss / 300, 100 * running_correct / running_total))
59             running_loss = 0.0  # 这小批300的loss清零
60             running_total = 0
61             running_correct = 0  # 这小批300的acc清零
62 
63 #测试轮
64 def test():
65     correct = 0
66     total = 0
67     with torch.no_grad():  # 测试集不用算梯度
68         for data in test_loader:
69             images, labels = data
70             outputs = model(images)
71             _, predicted = torch.max(outputs.data, dim=1)  # dim = 1 列是第0个维度,行是第1个维度,沿着行(第1个维度)去找1.最大值和2.最大值的下标
72             total += labels.size(0)  # 张量之间的比较运算
73             correct += (predicted == labels).sum().item()
74     acc = correct / total
75     print('[%d / %d]: Accuracy on test set: %.1f %% ' % (epoch+1, EPOCH, 100 * acc))  # 求测试的准确率,正确数/总数
76     return acc
77 #主函数:共进行10轮次的训练:每训练一轮,就进行一次测试。
78 if __name__ == '__main__':
79     acc_list_test = []
80     for epoch in range(EPOCH):
81         train(epoch)
82         # if epoch % 10 == 9:  #每训练10轮 测试1次
83         acc_test = test()
84         acc_list_test.append(acc_test)

 

 

 1 #举例展示部分图
 2 import matplotlib.pyplot as plt;
 3 fig = plt.figure()
 4 for i in range(16):
 5     plt.subplot(4, 4, i+1)
 6     z=train_dataset.train_data[i]
 7     m=train_dataset.train_labels[i]
 8     plt.imshow(z, cmap='gray', interpolation='none')
 9     plt.title("Labels: {}".format(m))
10     plt.xticks([])
11     plt.yticks([])
12 plt.show()

 

 

 

 

 

1 y_test=acc_list_test
2 plt.plot(y_test)
3 plt.xlabel("Epoch")
4 plt.ylabel("Accuracy On TestSet")
5 plt.show()

 

 

 

 

标签:plt,nn,torch,running,神经网络,实验,test,手写,size
From: https://www.cnblogs.com/Xu820228/p/16934250.html

相关文章

  • 实验五
    pets.hpp:#include<iostream>#include<string>usingnamespacestd;classMachinePets{private:stringnickname;public:MachinePets(){}Machine......
  • 实验置信区间
    转载:https://www.4vv4.com/article/197.html如何计算置信区间?要计算置信区间,请先计算样本的均值和标准误。请记住,您必须使用z得分针对所选的置信度水平来计算置信区间的......
  • 实验五
    task4.cpp:#pragmaonce#include<iostream>#include<string>usingnamespacestd;classMachinePets{public: MachinePets(conststrings):nickname{s}{} v......
  • 实验五
    #include<iostream>#include"pets.hpp"voidplay(MachinePets&obj){std::cout<<obj.get_nickname()<<"says"<<obj.talk()<<std::endl;}voidtest......
  • matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类|附代码数据
    全文下载链接:http://tecdat.cn/?p=19751本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类。最近我们被客户要求撰写关于LSTM的研究报告,包括一些图形和统计输出......
  • 实验5
    task4main.cpp#include<iostream>#include"pets.hpp"voidplay(MachinePets&obj){std::cout<<obj.get_nickname()<<"says"<<obj.talk()<<std::en......
  • 实验五
    实验任务四#pragmaonce#include<iostream>#include<string>usingnamespacestd;classMachinePets{public:MachinePets(conststrings):nickname(s){}......
  • 实验五:全连接神经网络手写数字识别实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】1.使用pytorch框架,......
  • PTA 21级数据结构与算法实验8—排序
    目录7-1统计工龄7-2寻找大富翁7-3点赞狂魔7-4插入排序还是归并排序7-5插入排序还是堆排序7-6逆序对7-7堆排序7-8石子合并7-9第k小7-10快速排序的过程7-1统计工......
  • 实验五:全连接神经网络手写数字识别实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。【实验内容】使用pytorch框架,设......