首页 > 其他分享 >PyTorch复现GoogleNet学习笔记

PyTorch复现GoogleNet学习笔记

时间:2022-11-22 19:35:34浏览次数:81  
标签:acc loss val self torch GoogleNet PyTorch train 复现

PyTorch复现GoogleNet学习笔记

一篇简单的学习笔记,实现五类花分类,这里只介绍复现的一些细节

如果想了解更多有关网络的细节,请去看论文《Going Deeper with Convolutions

简单说明下数据集,下载链接,这里用的数据与AlexNet的那篇是一样的所以不在说明

一、环境准备

可以去看之前的一篇博客,里面写的很详细了,并且推荐了一篇炮哥的环境搭建环境

  • Anaconda3(建议使用)
  • python=3.6/3.7/3.8
  • pycharm (IDE)
  • pytorch=1.11.0 (pip package)
  • torchvision=0.12.0 (pip package)
  • cudatoolkit=11.3

二、模型搭建、训练

1.整体框图

GoogleNet整体框图

两个红色框是表示辅助输出器的位置

 

 

 inception结构

 

 

辅助分类器结构

 

 

 

说明:

 

 

 

 

 GoogleNet作为2014年的ILSVRC比赛的冠军相比VGG,网络参数只有vgg的1/10不到

其创新点:

  • 引入了inception结构
  • 使用1*1的卷积进行降维以及映射处理
  • 添加两个辅助分类器帮助训练
  • 丢弃全连接层,使用平均池化层(大大降低网络的参数)

2.net.py

网络整体结构代码

  1 import torch.nn as nn
  2 import torch
  3 import torch.nn.functional as F
  4 
  5 
  6 class GoogLeNet(nn.Module):
  7     def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
  8         super(GoogLeNet, self).__init__()
  9         self.aux_logits = aux_logits
 10 
 11         self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
 12         self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
 13 
 14         self.conv2 = BasicConv2d(64, 64, kernel_size=1)
 15         self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
 16         self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
 17 
 18         self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
 19         self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
 20         self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
 21 
 22         self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
 23         self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
 24         self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
 25         self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
 26         self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
 27         self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
 28 
 29         self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
 30         self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
 31 
 32         if self.aux_logits:
 33             self.aux1 = InceptionAux(512, num_classes)
 34             self.aux2 = InceptionAux(528, num_classes)
 35 
 36         self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
 37         self.dropout = nn.Dropout(0.4)
 38         self.fc = nn.Linear(1024, num_classes)
 39         if init_weights:
 40             self._initialize_weights()
 41 
 42     def forward(self, x):
 43         # N x 3 x 224 x 224
 44         x = self.conv1(x)
 45         # N x 64 x 112 x 112
 46         x = self.maxpool1(x)
 47         # N x 64 x 56 x 56
 48         x = self.conv2(x)
 49         # N x 64 x 56 x 56
 50         x = self.conv3(x)
 51         # N x 192 x 56 x 56
 52         x = self.maxpool2(x)
 53 
 54         # N x 192 x 28 x 28
 55         x = self.inception3a(x)
 56         # N x 256 x 28 x 28
 57         x = self.inception3b(x)
 58         # N x 480 x 28 x 28
 59         x = self.maxpool3(x)
 60         # N x 480 x 14 x 14
 61         x = self.inception4a(x)
 62         # N x 512 x 14 x 14
 63         if self.training and self.aux_logits:    # eval model lose this layer
 64             aux1 = self.aux1(x)
 65 
 66         x = self.inception4b(x)
 67         # N x 512 x 14 x 14
 68         x = self.inception4c(x)
 69         # N x 512 x 14 x 14
 70         x = self.inception4d(x)
 71         # N x 528 x 14 x 14
 72         if self.training and self.aux_logits:    # eval model lose this layer
 73             aux2 = self.aux2(x)
 74 
 75         x = self.inception4e(x)
 76         # N x 832 x 14 x 14
 77         x = self.maxpool4(x)
 78         # N x 832 x 7 x 7
 79         x = self.inception5a(x)
 80         # N x 832 x 7 x 7
 81         x = self.inception5b(x)
 82         # N x 1024 x 7 x 7
 83 
 84         x = self.avgpool(x)
 85         # N x 1024 x 1 x 1
 86         x = torch.flatten(x, 1)
 87         # N x 1024
 88         x = self.dropout(x)
 89         x = self.fc(x)
 90         # N x 1000 (num_classes)
 91         if self.training and self.aux_logits:   # eval model lose this layer
 92             return x, aux2, aux1
 93         return x
 94 
 95     def _initialize_weights(self):
 96         for m in self.modules():
 97             if isinstance(m, nn.Conv2d):
 98                 nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
 99                 if m.bias is not None:
100                     nn.init.constant_(m.bias, 0)
101             elif isinstance(m, nn.Linear):
102                 nn.init.normal_(m.weight, 0, 0.01)
103                 nn.init.constant_(m.bias, 0)
104 
105 
106 class Inception(nn.Module):
107     def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
108         super(Inception, self).__init__()
109 
110         self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
111 
112         self.branch2 = nn.Sequential(
113             BasicConv2d(in_channels, ch3x3red, kernel_size=1),
114             BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小
115         )
116 
117         self.branch3 = nn.Sequential(
118             BasicConv2d(in_channels, ch5x5red, kernel_size=1),
119             # 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue
120             # Please see https://github.com/pytorch/vision/issues/906 for details.
121             BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)   # 保证输出大小等于输入大小
122         )
123 
124         self.branch4 = nn.Sequential(
125             nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
126             BasicConv2d(in_channels, pool_proj, kernel_size=1)
127         )
128 
129     def forward(self, x):
130         branch1 = self.branch1(x)
131         branch2 = self.branch2(x)
132         branch3 = self.branch3(x)
133         branch4 = self.branch4(x)
134 
135         outputs = [branch1, branch2, branch3, branch4]
136         return torch.cat(outputs, 1)
137 
138 
139 class InceptionAux(nn.Module):
140     def __init__(self, in_channels, num_classes):
141         super(InceptionAux, self).__init__()
142         self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
143         self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
144 
145         self.fc1 = nn.Linear(2048, 1024)
146         self.fc2 = nn.Linear(1024, num_classes)
147 
148     def forward(self, x):
149         # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
150         x = self.averagePool(x)
151         # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
152         x = self.conv(x)
153         # N x 128 x 4 x 4
154         x = torch.flatten(x, 1)
155         x = F.dropout(x, 0.5, training=self.training)
156         # N x 2048
157         x = F.relu(self.fc1(x), inplace=True)
158         x = F.dropout(x, 0.5, training=self.training)
159         # N x 1024
160         x = self.fc2(x)
161         # N x num_classes
162         return x
163 
164 
165 class BasicConv2d(nn.Module):
166     def __init__(self, in_channels, out_channels, **kwargs):
167         super(BasicConv2d, self).__init__()
168         self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
169         self.relu = nn.ReLU(inplace=True)
170 
171     def forward(self, x):
172         x = self.conv(x)
173         x = self.relu(x)
174         return x
175 
176 if __name__=="__main__":
177     x = torch.rand([1, 3, 224, 224])
178     model = GoogLeNet(num_classes=5)
179     y = model(x)
180     print(y)
181 
182     # 统计模型参数
183     # sum = 0
184     # for name, param in model.named_parameters():
185     #     num = 1
186     #     for size in param.shape:
187     #         num *= size
188     #     sum += num
189     #     #print("{:30s} : {}".format(name, param.shape))
190     # print("total param num {}".format(sum))#total param num 10,318,655
搭建模型代码

写完后保存,运行可以检查是否报错

如果需要打印模型参数,将代码注释去掉即可,得到googlenet的参数为10,318,655

3.数据划分

这里与AlexNet用的一样

分好后的数据集

 运行下面代码将数据按一定比例,划分为训练集和验证集

数据划分的代码

4.train.py

训练的代码,训练结束后画出训练集和验证集的loss,准确度

  1 import json
  2 import torch
  3 from torch import nn
  4 from torchvision import transforms,datasets,utils
  5 from torch import optim
  6 from torch.optim import lr_scheduler
  7 from tqdm import tqdm#用于画进度条
  8 from model import GoogLeNet
  9 import matplotlib.pyplot as plt
 10 import os
 11 import sys
 12 
 13 
 14 
 15 def main():
 16     device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 17     print("using {} device".format(device))
 18 
 19     data_transform = {
 20         "train": transforms.Compose([transforms.RandomResizedCrop(224),
 21                                      transforms.RandomHorizontalFlip(),
 22                                      transforms.ToTensor(),
 23                                      transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
 24         "val": transforms.Compose([transforms.Resize((224, 224)),
 25                                    transforms.ToTensor(),
 26                                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
 27 
 28     #训练集以及测试集路径
 29     ROOT_TRAIN = 'data/train'
 30     ROOT_TEST = 'data/val'
 31 
 32     batch_size = 16
 33 
 34     train_dataset = datasets.ImageFolder(root=ROOT_TRAIN,transform=data_transform["train"])
 35     train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
 36 
 37     train_num = len(train_dataset)
 38 
 39     flow_list = train_dataset.class_to_idx#转换维字典,train_dataset里有这个对象
 40     # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
 41     cla_dict = dict((val,key) for key,val in flow_list.items())#键值对转换
 42     #{0: 'daisy', 1: 'dandelion', 2: 'roses', 3: 'sunflowers', 4: 'tulips'}
 43     # write dict into json file
 44     json_str = json.dumps(cla_dict, indent=4)
 45     with open('class_indices.json', 'w') as json_file:
 46         json_file.write(json_str)  # 保存json文件(好处,方便转换为其它类型数据)用于预测用
 47 
 48     val_dataset = datasets.ImageFolder(root=ROOT_TEST,transform=data_transform["val"])
 49     val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
 50 
 51     val_num = len(val_dataset)
 52 
 53     print("using {} images for training, {} images for validation.".format(train_num,
 54                                                                            val_num))
 55     net = GoogLeNet(num_classes=5,aux_logits=True,init_weights=True)
 56 
 57     #加载预训练模型
 58     # weights_path = "save_model/best_model.pth"
 59     # assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
 60     # missing_keys, unexpected_keys = net.load_state_dict(torch.load(weights_path,),strict=False)
 61 
 62     net.to(device)
 63     loss_fc = nn.CrossEntropyLoss()
 64     optimizer = optim.Adam(net.parameters(), lr=0.0003)
 65     # 学习率每隔10epoch变为原来的0.1
 66     lr_s = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
 67 
 68     #定义训练函数
 69     def train(dataloader, net, loss_fn, optimizer,i,epoch):
 70         net.train()
 71         loss, current,n = 0.0, 0.0,0
 72         train_bar = tqdm(train_loader, file=sys.stdout)
 73         for batch, (x, y) in enumerate(train_bar):
 74             # 前向传播
 75             image, y = x.to(device), y.to(device)
 76             logits,aux_logits1,aux_logits2 = net(image)
 77             loss0 = loss_fn(logits,y)
 78             loss1 = loss_fn(aux_logits1,y)
 79             loss2 = loss_fn(aux_logits2,y)
 80             cur_loss = loss0 + loss1*0.3 + loss2*0.3#在论文中辅助分类器权重为0.3
 81             _, pred = torch.max(logits, axis=-1)
 82             cur_acc = torch.sum(y == pred) / logits.shape[0]
 83             # 反向传播
 84             optimizer.zero_grad()  # 梯度清零
 85             cur_loss.backward()
 86             optimizer.step()
 87             loss += cur_loss
 88             current += cur_acc
 89             n +=1
 90             train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(i + 1, epoch, cur_loss)
 91         train_loss = loss / n
 92         train_acc = current / n
 93 
 94         print(f"tran_loss:{train_loss}")
 95         print(f"tran_acc:{train_acc}")
 96         return train_loss, train_acc
 97 
 98     def val(dataloader,net,loss_fn):
 99         #验证模式
100         net.eval()
101         loss, current ,n = 0.0, 0.0,0
102         with torch.no_grad():
103             val_bar = tqdm(val_loader, file=sys.stdout)
104             for batch,(x,y) in enumerate(val_bar):
105                 #前向传播
106                 image,y = x.to(device),y.to(device)
107                 output = net(image)
108                 cur_loss = loss_fn(output,y)
109                 _,pred = torch.max(output,axis=-1)
110                 cur_acc = torch.sum(y==pred)/output.shape[0]
111                 loss += cur_loss
112                 current += cur_acc
113                 val_bar.desc = "val epoch[{}/{}] loss:{:.3f}".format(i + 1, epoch, cur_loss)
114                 n +=1
115             val_loss = loss / n
116             val_acc = current / n
117             print(f"val_loss:{val_loss}")
118             print(f"val_acc:{val_acc}")
119             return val_loss,val_acc
120 
121     # 解决中文显示问题
122     plt.rcParams['font.sans-serif'] = ['SimHei']
123     plt.rcParams['axes.unicode_minus'] = False
124 
125     # 画图函数
126     def matplot_loss(train_loss, val_loss):
127         plt.figure()
128         plt.plot(train_loss, label='train_loss')  # 画图
129         plt.plot(val_loss, label='val_loss')
130         plt.legend(loc='best')  # 图例
131         plt.ylabel('loss', fontsize=12)
132         plt.xlabel('epoch', fontsize=12)
133         plt.title("训练集和验证集loss对比图")
134         plt.savefig('./loss.jpg')
135 
136     def matplot_acc(train_acc, val_acc):
137         plt.figure()#声明一个新画布,这样两张图像的结果就不会出现重叠
138         plt.plot(train_acc, label='train_acc')  # 画图
139         plt.plot(val_acc, label='val_acc')
140         plt.legend(loc='best')  # 图例
141         plt.ylabel('acc', fontsize=12)
142         plt.xlabel('epoch', fontsize=12)
143         plt.title("训练集和验证集acc对比图")
144         plt.savefig('./acc.jpg')
145 
146     # 开始训练
147     train_loss_list = []
148     val_loss_list = []
149     train_acc_list = []
150     val_acc_list = []
151 
152     epoch = 60
153     max_acc = 0
154 
155     for i in range(epoch):
156         lr_s.step()#学习率优化,10epoch变为原来的0.5
157 
158         train_loss,train_acc = train(train_loader,net,loss_fc,optimizer,i,epoch)
159 
160         val_loss,val_acc = val(val_loader,net,loss_fc)
161 
162         train_loss_list.append(train_loss)
163         train_acc_list.append(train_acc)
164         val_acc_list.append(val_acc)
165         val_loss_list.append(val_loss)
166 
167         # 保存最好的模型权重
168         if val_acc > max_acc:
169             folder = 'save_model'
170             if not os.path.exists(folder):
171                 os.mkdir('save_model')
172             max_acc = val_acc
173             print(f'save best model,第{i + 1}轮')
174             torch.save(net.state_dict(), 'save_model/best_model.pth')  # 保存网络权重
175         # 保存最后一轮
176         if i == epoch - 1:
177             torch.save(net.state_dict(), 'save_model/last_model.pth')  # 保存
178 
179     print("done")
180 
181     #画图
182     matplot_loss(train_loss_list,val_loss_list)
183     matplot_acc(train_acc_list,val_acc_list)
184 if __name__=="__main__":
185     os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
186     main()
训练代码

最后一轮的结果,总共60轮,3360张训练图片,364张验证图片,用时2h,batchsize=16

 

 

 

训练结束后可以得到训练集和验证集的loss,acc对比图

 

 

 

 

简单的评估下:可以看到与之前的AlexNet相比,验证集的准确率好多了。val_acc大概再40轮后就一直在84-85浮动,看val_loss,估计在40轮之后对训练集过拟合,从train_acc可以看出,精确度一直在变高,但验证集精确度一直在85左右

 三、模型推理

测试代码,这里用的测试集其实是之前训练时的验证集,本来是要另外创建一个的

这里路径需要自己改到需要推理的图片

 1 import os
 2 import json
 3 import torch
 4 from PIL import Image
 5 from torchvision import transforms
 6 import matplotlib.pyplot as plt
 7 from model import GoogLeNet
 8 
 9 def main():
10     device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
11 
12     data_transform = transforms.Compose([
13         transforms.Resize((224,224)),
14         transforms.ToTensor(),
15         transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))
16     ])
17     #load image
18     img_path = "data/val/daisy/476856232_7c35952f40_n.jpg"
19     assert os.path.exists(img_path),"file:'{}' dose not exist. ".format(img_path)
20     img = Image.open(img_path)
21     plt.imshow(img)
22 
23     #[N, C, H, W]归一化
24     img = data_transform(img)
25     # expand batch dimension
26     img = torch.unsqueeze(img,dim=0)
27 
28     # read class_indict
29     json_path = './class_indices.json'
30     assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
31 
32     with open(json_path,"r") as f:
33         class_indict = json.load(f)
34 
35     #实例化模型
36     model = GoogLeNet(num_classes=5,aux_logits=False).to(device)
37 
38     #加载权重
39     weights_path = "save_model/best_model.pth"
40     assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
41     missing_keys,unexpected_keys = model.load_state_dict(torch.load(weights_path,map_location=device),
42                                                          strict=False)
43     model.eval()
44     with torch.no_grad():
45         #预测
46         output = torch.squeeze(model(img.to(device))).cpu()
47         predict = torch.softmax(output, dim=0)
48         predict_cla = torch.argmax(predict).numpy()
49     #最大概率结果
50     print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
51                                                  predict[predict_cla].numpy())
52     #前10个结果
53     plt.title(print_res)
54     for i in range(len(predict)):
55         print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
56                                                   predict[i].numpy()))
57     plt.show()
58 if __name__=="__main__":
59     os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
60     main()
模型推理代码

 

运行代码后,对模型进行推理,去网上找几张图片,我这里随便从验证集拿了一张

下面是一张雏菊的照片,以及5类花预测的概率显示(右边)

 

 

 

总结

googlenet还是挺可以的

自己敲一下代码,会学到很多不懂的东西

最后,多看,多学,多试,总有一天你会称为大佬!

 

标签:acc,loss,val,self,torch,GoogleNet,PyTorch,train,复现
From: https://www.cnblogs.com/zhangjie123/p/16916193.html

相关文章

  • 统计pytorch、caffe稀疏代码
    pytorchnet=net_now()state_dict=torch.load(model_path,map_location=lambdastorage,loc:storage)net.load_state_dict(state_dict,strict=True)#net.cuda()......
  • Pytorch入门(4)—— Tensor和Module的保存与加载
    参考:动手学深度学习注意:由于本文是jupyter文档转换来的,代码不一定可以直接运行,有些注释是jupyter给出的交互结果,而非运行结果!!文章目录​​1.读写Tensor​​​​2.读写......
  • Pytorch入门(3)—— 构造网络模型
    参考:动手学深度学习注意:由于本文是jupyter文档转换来的,代码不一定可以直接运行,有些注释是jupyter给出的交互结果,而非运行结果!!文章目录​​1.模型构造​​​​1.1继承`M......
  • 【2022.11.21】pytorch的使用相关(五)
    资料来源ShusenTang/Dive-into-DL-PyTorch:本项目将《动手学深度学习》(DiveintoDeepLearning)原书中的MXNet实现改为PyTorch实现。(github.com)代码部分%matplotl......
  • Pytorch在训练时冻结某些层使其不参与反向传播
    笔记摘抄:https://blog.csdn.net/qq_36429555/article/details/118547133定义网络#定义一个简单的网络classnet(nn.Module):def__init__(self,num_class=10):......
  • ACGAN-pytorch
    点击查看代码importargparseimportosimportnumpyasnpimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsfromtorch.autograd......
  • [PyTorch] 自定义数据集
    步骤:自定义Dataset实例:定义__init__方法:返回feature和label两个部分的数据;定义__getitem();定义_len_()方法;使用torch.utils.data.DataLoader加载数据;示......
  • RNN的PyTorch实现
    官方实现PyTorch已经实现了一个RNN类,就在torch.nn工具包中,通过torch.nn.RNN调用。使用步骤:实例化类;将输入层向量和隐藏层向量初始状态值传给实例化后的对象,获得RNN的......
  • pytorch学习笔记(1)
    pytorch学习笔记(1)   expand向左扩展维度、扩展元素个数a=t.ones(2,3)只能在左侧增加维度,而不能在右侧增加维度,也不能在中间增加维度新增维度的元素个数可以为任......
  • Pytorch基于MNIST数据集简单实现手写数字识别
    """模型训练代码"""importtorchimporttorchvision.datasetsfromtorchimportnnfromtorchvisionimporttransformsfromtorch.utils.dataimportDataLoaderi......