""" 将16位遥感图像压缩至8位,并保持色彩一致 """ from osgeo import gdal import os import glob import numpy as np import matplotlib.pyplot as plt # plt 用于显示图片 import matplotlib.image as mpimg # mpimg 用于读取图片 def read_tiff(input_file): """ 读取影像 :param input_file:输入影像 :return:波段数据,仿射变换参数,投影信息、行数、列数、波段数 """ print("**********",input_file) dataset = gdal.Open(input_file) rows = dataset.RasterYSize cols = dataset.RasterXSize geo = dataset.GetGeoTransform() proj = dataset.GetProjection() couts = dataset.RasterCount array_data = np.zeros((couts, rows, cols)) for i in range(couts): band = dataset.GetRasterBand(i + 1) array_data[i, :, :] = band.ReadAsArray() return array_data, geo, proj, rows, cols, 1 def compress(origin_16, output_8): array_data, geo, proj, rows, cols, couts = read_tiff(origin_16) compress_data = np.zeros((couts, rows, cols)) for i in range(couts): band_max = np.max(array_data[i, :, :]) band_min = np.min(array_data[i, :, :]) cutmin, cutmax = cumulativehistogram(array_data[i, :, :], rows, cols, band_min, band_max) compress_scale = (cutmax - cutmin) / 255 for j in range(rows): for k in range(cols): if (array_data[i, j, k] < cutmin): array_data[i, j, k] = cutmin if (array_data[i, j, k] > cutmax): array_data[i, j, k] = cutmax compress_data[i, j, k] = (array_data[i, j, k] - cutmin) / compress_scale write_tiff(output_8, compress_data, rows, cols, couts, geo, proj) def write_tiff(output_file, array_data, rows, cols, counts, geo, proj): Driver = gdal.GetDriverByName("Gtiff") dataset = Driver.Create(output_file, cols, rows, counts, gdal.GDT_Byte) dataset.SetGeoTransform(geo) dataset.SetProjection(proj) for i in range(counts): band = dataset.GetRasterBand(i + 1) band.WriteArray(array_data[i, :, :]) def cumulativehistogram(array_data, rows, cols, band_min, band_max): """ 累计直方图统计 """ # 逐波段统计最值 gray_level = int(band_max - band_min + 1) gray_array = np.zeros(gray_level) counts = 0 for row in range(rows): for col in range(cols): gray_array[int(array_data[row, col] - band_min)] += 1 counts += 1 count_percent2 = counts * 0.02 count_percent98 = counts * 0.98 cutmax = 0 cutmin = 0 for i in range(1, gray_level): gray_array[i] += gray_array[i - 1] if (gray_array[i] >= count_percent2 and gray_array[i - 1] <= count_percent2): cutmin = i + band_min if (gray_array[i] >= count_percent98 and gray_array[i - 1] <= count_percent98): cutmax = i + band_min return cutmin, cutmax if __name__ == '__main__': input_path = r"D:\test" classs = os.listdir(input_path) i=0 for folder in classs: folderall = os.path.join(input_path, folder) # print(folderall) # lena = mpimg.imread(folderall) # lena.shape # plt.imshow(lena) # 显示图片 # plt.axis('off') # 不显示坐标轴 # plt.show() # break output_8 = r'D:\test\out{}.tif'.format(i) compress(folderall, output_8) i=i+1
标签:rows,band,16,cols,dataset,图像压缩,遥感,array,data From: https://www.cnblogs.com/suoyike1001/p/16912928.html