5. KKT和凸优化的关系是什么?
KKT主要是针对带约束的可微分的优化问题,凸优化研究的对象是目标函数为凸函数,约束为凸集的优化问题。因此这两者研究的对象,有交集,也各有不同。
第一类问题为两类问题的交集即带约束的可微分凸优化问题,这类问题目前已经被很好的解决了,它同时具备两类问题的性质,凸优化和可微分性,让原来KKT从局部最优解的必要条件变为全局最优解的充要条件。
第二类问题是凸优化但是不可微分,这类问题也较为常见,在拉格朗日松弛算法中,对偶问题一般都是不可微分的凸优化问题,因为不可微分,传统的基于梯度的方法就不适用了,一般采用次梯度的方法,主要难点在于次梯度如何确定,由于次梯度不唯一,如何确定一个简单有效的次梯度也是一个问题。
第三类问题是可微分的但不是凸优化的,这类问题也很多,一般这类问题都可以采用基于梯度的算法来求解,例如对神经网络的训练多数就属于这类问题。采用梯度法仅仅能保证收敛到局部最优的必要条件而已。因此该类问题的受困于陷入鞍点和全局最优的寻找是很困难的。
总结
1 去掉regularity条件的KKT条件严格来讲并非最优解的必要条件。
2 有最优性条件对优化问题而言是一个较好的性质。
链接:https://zhuanlan.zhihu.com/p/33229011
。 标签:次梯度,意义,KKT,微分,问题,条件,最优,优化 From: https://www.cnblogs.com/jinyun-zc/p/16909978.html