首页 > 其他分享 >用LASSO,adaptive LASSO预测通货膨胀时间序列|附代码数据

用LASSO,adaptive LASSO预测通货膨胀时间序列|附代码数据

时间:2022-11-16 18:13:56浏览次数:72  
标签:预测 ## 回归 序列 adaptive LASSO 模型 lasso

原文链接:http://tecdat.cn/?p=22273

如果你了解数据科学领域,你可能听说过LASSO。LASSO是一个对目标函数中的参数大小进行惩罚的模型,试图将不相关的变量从模型中排除

动机

它有两个非常自然的用途,第一个是变量选择,第二个是预测。因为通常情况下,LASSO选择的变量会比普通最小二乘法(OLS)少得多,其预测的方差会小得多,代价是样本中出现少量的偏差。

LASSO最重要的特点之一是它可以处理比观测值多得多的变量,我说的是成千上万的变量。这是它最近流行的主要原因之一。

实例

在这个例子中,我使用最流行的LASSO,glmnet。我们可以非常快速地估计LASSO,并使用交叉验证选择最佳模型。根据我的经验,在时间序列的背景下,使用信息准则(如BIC)来选择最佳模型会更好。它更快,并避免了时间序列中交叉验证的一些复杂问题。

本文估计LASSO,并使用信息标准来选择最佳模型。我们将使用LASSO来预测通货膨胀。

## == 数据分解成样本内和样本外
y.in=y[1:100]; y.out=y[-c(1:100)]
x.in=x[1:100,]; x.out=x[-c(1:100),]

## == LASSO == ##
glmnet(x.in,y.in,crit = "bic")

点击标题查阅往期内容

图片

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

图片

左右滑动查看更多

图片

01

图片

02

图片

03

图片

04

图片

plot(lasso)

图片

上面的第一个图显示,当我们增加LASSO目标函数中的惩罚时,变量会归零。第二张图显示了BIC曲线和选定的模型。现在我们可以计算预测了。

## == 预测 == ##
predict(lasso,x.out)

图片

adaptive LASSO

LASSO有一个自适应版本,在变量选择方面有一些更好的特性。请注意,这并不总是意味着更好的预测。该模型背后的想法是使用一些以前知道的信息来更有效地选择变量。一般来说,这些信息是由LASSO或其他一些模型估计的系数。

## = adaLASSO = ##

adalasso(x.in,y.in,crit="bic",penalty=factor)
predict(adalasso, x.out)

图片

## = 比较误差 = ##
sqrt(mean((y.out-pred.ada)^2)

在这种情况下,adaLASSO产生了一个更精确的预测。一般来说,adaLASSO比简单的LASSO的预测效果更好。然而,这不是一个绝对的事实。我见过很多简单LASSO做得更好的案例。

参考文献

[1] Bühlmann, Peter, and Sara Van De Geer. Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media, 2011.

[2] Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for
Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL http://www.jstatsoft.org/v33/i01/

[3] Marcio Garcia, Marcelo C. Medeiros , Gabriel F. R. Vasconcelos (2017). Real-time inflation forecasting with high-dimensional models: The case of Brazil. Internationnal Journal of Forecasting, in press.


图片

本文摘选 《 R语言用LASSO,adaptive LASSO预测通货膨胀时间序列 》 ,点击“阅读原文”获取全文完整资料。


点击标题查阅往期内容

MATLAB用Lasso回归拟合高维数据和交叉验证
群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化
高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据
Python高维变量选择:SCAD平滑剪切绝对偏差惩罚、Lasso惩罚函数比较
R使用LASSO回归预测股票收益
广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)
广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)
Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例
R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
Python中的Lasso回归之最小角算法LARS
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
R语言实现LASSO回归——自己编写LASSO回归算法
r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现
R使用LASSO回归预测股票收益
R语言如何和何时使用glmnet岭回归
R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化
Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列
Python用ARIMA和SARIMA模型预测销量时间序列数据

标签:预测,##,回归,序列,adaptive,LASSO,模型,lasso
From: https://www.cnblogs.com/tecdat/p/16896884.html

相关文章