首页 > 其他分享 >2935. 信用卡凸包

2935. 信用卡凸包

时间:2022-11-15 19:34:06浏览次数:82  
标签:信用卡 int 0.0 PDD 2935 样例 凸包 pi

题目链接

2935. 信用卡凸包

信用卡是一个矩形,唯四个角作了圆滑处理,使它们都是与矩形的两边相切的 \(\frac{1}{4}\) 圆,如下图所示。

image

现在平面上有一些规格相同的信用卡,试求其凸包的周长。

注意凸包未必是多边形,因为它可能包含若干段圆弧。

输入格式

第一行是一个正整数 \(n\),表示信用卡的张数。

第二行包含三个实数 \(a, b, r\),分别表示信用卡(圆滑处理前)竖直方向的长度、水平方向的长度,以及 \(\frac{1}{4}\) 圆的半径。

之后 \(n\) 行,每行包含三个实数 \(x, y, θ\),分别表示一张信用卡中心(即对角线交点)的横、纵坐标,以及绕中心逆时针旋转的弧度

输出格式

输出只有一行,包含一个实数,表示凸包的周长,四舍五入精确到小数点后 \(2\) 位。

数据范围

\(1 \le n \le 10000\),
\(0.1 \le a,b \le 1000000.0\),
\(0.0 \le r < \min \{ a/4,b/4 \}\),
\(|x|,|y| \le 1000000.0\),
\(0 \le θ < 2 \pi\)

输入样例1:

2
6.0 2.0 0.0
0.0 0.0 0.0
2.0 -2.0 1.5707963268

输出样例1:

21.66

样例1解释

image

本样例中的 \(2\) 张信用卡的轮廓在上图中用实线标出,如果视 \(1.5707963268\) 为 \(\pi/2\)( \(\pi\) 为圆周率),则其凸包的周长为 \(16+4 \times \sqrt 2\)。

输入样例2:

3
6.0 6.0 1.0
4.0 4.0 0.0
0.0 8.0 0.0
0.0 0.0 0.0

输出样例2:

41.60

样例2解释

image

输入样例3:

3
6.0 6.0 1.0
4.0 4.0 0.1745329252
0.0 8.0 0.3490658504
0.0 0.0 0.5235987756

输出样例3:

41.63

样例3解释

3.png

其凸包的周长约为 \(41.628267652\)。

解题思路

凸包

求解直线比较容易,即将所有圆心求一遍凸包,但计算弧线部分的周长比较困难,考虑将最后的凸包想象成一个 \(n\) 边形,\(n\) 边形的每个内角 \(\alpha_i\) 和对应弧线对应的弧角 \(beta_i\) 都有这样的关系 \(\alpha_i+\beta_i=\pi\),而由 \(n\) 边形内角和可知:\((n-2)\times \pi+\sum \beta_i=n\pi\),得 \(\sum \beta_i=2\pi\),即最后形成的弧线是一个圆

  • 时间复杂度:\(O(nlogn)\)

代码

// Problem: 信用卡凸包
// Contest: AcWing
// URL: https://www.acwing.com/problem/content/2938/
// Memory Limit: 64 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

// %%%Skyqwq
#include <bits/stdc++.h>

//#define int long long
#define help {cin.tie(NULL); cout.tie(NULL);}
#define pb push_back
#define fi first
#define se second
#define mkp make_pair
using namespace std;
 
typedef long long LL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
 
template <typename T> bool chkMax(T &x, T y) { return (y > x) ? x = y, 1 : 0; }
template <typename T> bool chkMin(T &x, T y) { return (y < x) ? x = y, 1 : 0; }
 
template <typename T> void inline read(T &x) {
    int f = 1; x = 0; char s = getchar();
    while (s < '0' || s > '9') { if (s == '-') f = -1; s = getchar(); }
    while (s <= '9' && s >= '0') x = x * 10 + (s ^ 48), s = getchar();
    x *= f;
}

const int N=50005;
const double pi=acos(-1),eps=1e-8;
typedef pair<double,double> PDD;
int n,cnt,stk[N],top;
int dx[]={-1,-1,1,1},dy[]={-1,1,1,-1};
double a,b,r;
PDD q[N];
PDD operator-(PDD a,PDD b)
{
	return {a.fi-b.fi,a.se-b.se};
}
PDD rotate(PDD a,double angle)
{
	return {a.fi*cos(angle)+a.se*sin(angle),-a.fi*sin(angle)+a.se*cos(angle)};
}
int sign(double x)
{
    if(fabs(x)<eps)return 0;
    if(x<0)return -1;
    return 1;
}
double cross(double x1,double y1,double x2,double y2)
{
    return x1*y2-x2*y1;
}
double area(PDD a,PDD b,PDD c)
{
    return cross(b.fi-a.fi,b.se-a.se,c.fi-a.fi,c.se-a.se);
}
double get_dist(PDD a,PDD b)
{
    return sqrt((a.fi-b.fi)*(a.fi-b.fi)+(b.se-a.se)*(b.se-a.se));
}
void andrew()
{
	sort(q+1,q+1+cnt);
    for(int i=1;i<=cnt;i++)
    {
        while(top>=2&&sign(area(q[stk[top-1]],q[stk[top]],q[i]))<=0)top--;
        stk[++top]=i;
    }
    int k=top;
    for(int i=cnt;i>=1;i--)
    {
        while(top>k&&sign(area(q[stk[top-1]],q[stk[top]],q[i]))<=0)top--;
        stk[++top]=i;
    }
    if(cnt>1)top--;
}
int main()
{
    scanf("%d%lf%lf%lf",&n,&a,&b,&r);
    a=a/2-r,b=b/2-r;
    while(n--)
    {
    	double x,y,z;
    	scanf("%lf%lf%lf",&x,&y,&z);
    	for(int i=0;i<4;i++)
    	{
    		PDD t=rotate({dx[i]*b,dy[i]*a},-z);
    		q[++cnt]={x+t.fi,y+t.se};
    	}
    }
    andrew();
    double res=0;
    for(int i=1;i<top;i++)res+=get_dist(q[stk[i]],q[stk[i+1]]);
    res+=get_dist(q[stk[1]],q[stk[top]]);	
    printf("%.2lf",res+pi*r*2);
    return 0;
}

标签:信用卡,int,0.0,PDD,2935,样例,凸包,pi
From: https://www.cnblogs.com/zyyun/p/16893605.html

相关文章

  • 信用卡逾期后,与银行协商,一定要知道这5点,成功率更高!
    信用卡逾期后,与银行协商,一定要知道这5点,成功率更高!1、逾期后无力偿还,尽快主动拨打银行后客服电话,不要等半年后再协商,银行会觉的你没有诚意。2、拨通电话要说协商个性化分......
  • 矢量&凸包学习笔记
    矢量&凸包学习笔记矢量矢量(向量)的定义和表示法定义:一条有方向的线段。表示:如下图。那么我们把这一条矢量写作:\(\overrightarrow{AB}\),它的长度为\(a\),记作\(\left|\o......
  • C# Linq判断这个字段是否包含(信用卡)三个字
     C#Linq判断这个字段是否包含(信用卡)三个字//判断字段是否包含“信用卡”三个字//System.Linq.Enumerable.WhereEnumerableIterator<char>IE......
  • 艺龙信用卡加密C#版
     信用卡如何加密使用DES对称加密中cbc模式(key值和iv值一致)加密内容=当前时间戳+#+信用卡号密钥为appkey的后8位例如:CreditCardNO= des_encrypt(time().'#240000......
  • 数据集 | 信用卡客户的默认数据集
    下载数据集请登录爱数科这项研究针对台湾客户的违约支付情况,并比较了六种数据挖掘方法中的违约概率的预测准确性。1.字段描述2.数据预览3.字段诊断信息4.数据来源Name:......
  • 数据集 | 群集信用卡数据集
    下载数据集请登录爱数科这个案例需要制定一个客户细分来定义营销策略。数据集总结了大约9000个活跃信用卡持有人在过去6个月的使用行为。共18个属性,8950条数据。1.字段描述......
  • 二维凸包构造
    凸多边形是指所有内角大小都在\([0,\pi]\)范围内的简单多边形在平面上能包含所有给定点的最小凸多边形叫做凸包。I.jarvis数学构造法现在平面上有这么多个点。......
  • 信用卡、借记卡
    通俗来说,借记卡=储蓄卡,而信用卡=贷记卡+​​准贷记卡​​。借记卡与信用卡两者的区别如下:1、借记卡存款有息,信用卡则没有。2、信用卡能循环信用额度。我国发卡银行一般给予......
  • 凸包算法
    凸包的概念:在某个二维平面上的给定一个点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点。凸包算法从点集中获取凸包的方法比较常用的有Jarvis步......
  • 51 信用卡微服务集成测试自动化探索
    1简介51信用卡管家自2015年开始实施微服务架构,是业界较早尝试微服务架构的技术团队,整个团队有幸见证了微服务从最初的个服务试点到全面铺开的过程。架构的演变也催生......