首页 > 其他分享 >简约而不简单|值得收藏的Numpy小抄表(含主要语法、代码)

简约而不简单|值得收藏的Numpy小抄表(含主要语法、代码)

时间:2022-11-14 16:01:13浏览次数:72  
标签:简约 numpy 小抄 html https np org array Numpy


Numpy是一个用python实现的科学计算的扩展程序库,包括:

  • 1、一个强大的N维数组对象Array;
  • 2、比较成熟的(广播)函数库;
  • 3、用于整合C/C++和Fortran代码的工具包;
  • 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。

NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。

本文整理了一个Numpy的小抄表,总结了Numpy的常用操作,可以收藏慢慢看。

安装Numpy

可以通过 Pip 或者 Anaconda安装Numpy:

$ pip install numpy

$ conda install numpy

本文目录

  1. 基础
  • 占位符
  • 数组
  • 增加或减少元素
  • 合并数组
  • 分割数组
  • 数组形状变化
  • 拷贝 /排序
  • 数组操作
  • 其他
  • 数学计算
  • 数学计算
  • 比较
  • 基础统计
  • 更多
  • 切片和子集
  • 小技巧

基础

NumPy最常用的功能之一就是NumPy数组:列表和NumPy数组的最主要区别在于功能性和速度。

列表提供基本操作,但NumPy添加了FTTs、卷积、快速搜索、基本统计、线性代数、直方图等。

两者数据科学最重要的区别是能够用NumPy数组进行元素级计算。

​axis 0​​ 通常指行

​axis 1​​ 通常指列

操作

描述

文档

​np.array([1,2,3])​

一维数组

​https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array​

​np.array([(1,2,3),(4,5,6)])​

二维数组

​https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array​

​np.arange(start,stop,step)​

等差数组

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html​

占位符

操作

描述

文档

​np.linspace(0,2,9)​

数组中添加等差的值

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html​

​np.zeros((1,2))​

创建全0数组

docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html

​np.ones((1,2))​

创建全1数组

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones​

​np.random.random((5,5))​

创建随机数的数组

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random.html​

​np.empty((2,2))​

创建空数组

​https://numpy.org/doc/stable/reference/generated/numpy.empty.html​

举例:

import numpy as np


# 1 dimensional
x = np.array([1,2,3])
# 2 dimensional
y = np.array([(1,2,3),(4,5,6)])


x = np.arange(3)
>>> array([0, 1, 2])


y = np.arange(3.0)
>>> array([ 0., 1., 2.])


x = np.arange(3,7)
>>> array([3, 4, 5, 6])


y = np.arange(3,7,2)
>>> array([3, 5])

数组属性

数组属性

语法

描述

文档

​array.shape​

维度(行,列)

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html​

​len(array)​

数组长度

​https://docs.python.org/3.5/library/functions.html#len​

​array.ndim​

数组的维度数

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html​

​array.size​

数组的元素数

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html​

​array.dtype​

数据类型

​https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html​

​array.astype(type)​

转换数组类型

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html​

​type(array)​

显示数组类型

​https://numpy.org/doc/stable/user/basics.types.html​

拷贝 /排序

操作

描述

文档

​np.copy(array)​

创建数组拷贝

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html​

​other = array.copy()​

创建数组深拷贝

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html​

​array.sort()​

排序一个数组

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html​

​array.sort(axis=0)​

按照指定轴排序一个数组

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html​

举例

import numpy as np
# Sort sorts in ascending order
y = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
y.sort()
print(y)
>>> [ 1 2 3 4 5 6 7 8 9 10]

数组操作例程

增加或减少元素

操作

描述

文档

​np.append(a,b)​

增加数据项到数组

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.append.html​

​np.insert(array, 1, 2, axis)​

沿着数组0轴或者1轴插入数据项

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.insert.html​

​np.resize((2,4))​

将数组调整为形状(2,4)

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.resize.html​

​np.delete(array,1,axis)​

从数组里删除数据项

​https://numpy.org/doc/stable/reference/generated/numpy.delete.html​

举例

import numpy as np
# Append items to array
a = np.array([(1, 2, 3),(4, 5, 6)])
b = np.append(a, [(7, 8, 9)])
print(b)
>>> [1 2 3 4 5 6 7 8 9]


# Remove index 2 from previous array
print(np.delete(b, 2))
>>> [1 2 4 5 6 7 8 9]

组合数组

操作

描述

文档

​np.concatenate((a,b),axis=0)​

连接2个数组,添加到末尾

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html​

​np.vstack((a,b))​

按照行堆叠数组

​https://numpy.org/doc/stable/reference/generated/numpy.vstack.html​

​np.hstack((a,b))​

按照列堆叠数组

docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html#numpy.hstack

举例

import numpy as np
a = np.array([1, 3, 5])
b = np.array([2, 4, 6])


# Stack two arrays row-wise
print(np.vstack((a,b)))
>>> [[1 3 5]
[2 4 6]]


# Stack two arrays column-wise
print(np.hstack((a,b)))
>>> [1 3 5 2 4 6]

分割数组

操作

描述

文档

​numpy.split()​

分割数组

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html​

​np.array_split(array, 3)​

将数组拆分为大小(几乎)相同的子数组

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.array_split.html#numpy.array_split​

​numpy.hsplit(array, 3)​

在第3个索引处水平拆分数组

​https://numpy.org/doc/stable/reference/generated/numpy.hsplit.html#numpy.hsplit​

举例

# Split array into groups of ~3
a = np.array([1, 2, 3, 4, 5, 6, 7, 8])
print(np.array_split(a, 3))
>>> [array([1, 2, 3]), array([4, 5, 6]), array([7, 8])]

数组形状变化

操作

操作

描述

文档

​other = ndarray.flatten()​

平铺一个二维数组到一维数组

​https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html​

numpy.flip()

翻转一维数组中元素的顺序

​https://docs.scipy.org/doc/stable/reference/generated/numpy.flip.html​

np.ndarray[::-1]

翻转一维数组中元素的顺序


reshape

改变数组的维数

​https://docs.scipy.org/doc/stable/reference/generated/numpy.reshape.html​

squeeze

从数组的形状中删除单维度条目

​https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html​

expand_dims

扩展数组维度

​https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.expand_dims.html​

其他

操作

描述

文档

​other = ndarray.flatten()​

平铺2维数组到1维数组

​https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html​

​array = np.transpose(other)​​​​array.T​

数组转置

​https://numpy.org/doc/stable/reference/generated/numpy.transpose.html​

​inverse = np.linalg.inv(matrix)​

求矩阵的逆矩阵

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html​


举例

# Find inverse of a given matrix
>>> np.linalg.inv([[3,1],[2,4]])
array([[ 0.4, -0.1],
[-0.2, 0.3]])

数学计算

操作

操作

描述

文档

​np.add(x,y)​​​​x + y​


​https://docs.scipy.org/doc/numpy/reference/generated/numpy.add.html​

​np.substract(x,y)​​​​x - y​


​https://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html#numpy.subtract​

​np.divide(x,y)​​​​x / y​


​https://docs.scipy.org/doc/numpy/reference/generated/numpy.divide.html#numpy.divide​

​np.multiply(x,y)​​​​x * y​


​https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html#numpy.multiply​

​np.sqrt(x)​

平方根

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html#numpy.sqrt​

​np.sin(x)​

元素正弦

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.sin.html#numpy.sin​

​np.cos(x)​

元素余弦

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.cos.html#numpy.cos​

​np.log(x)​

元素自然对数

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log​

​np.dot(x,y)​

点积

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html​

​np.roots([1,0,-4])​

给定多项式系数的根

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.roots.html​

举例

# If a 1d array is added to a 2d array (or the other way), NumPy
# chooses the array with smaller dimension and adds it to the one
# with bigger dimension
a = np.array([1, 2, 3])
b = np.array([(1, 2, 3), (4, 5, 6)])
print(np.add(a, b))
>>> [[2 4 6]
[5 7 9]]

# Example of np.roots
# Consider a polynomial function (x-1)^2 = x^2 - 2*x + 1
# Whose roots are 1,1
>>> np.roots([1,-2,1])
array([1., 1.])
# Similarly x^2 - 4 = 0 has roots as x=±2
>>> np.roots([1,0,-4])
array([-2., 2.])

比较

操作

描述

文档

​==​

等于

​https://docs.python.org/2/library/stdtypes.html​

​!=​

不等于

​https://docs.python.org/2/library/stdtypes.html​

​<​

小于

​https://docs.python.org/2/library/stdtypes.html​

​>​

大于

​https://docs.python.org/2/library/stdtypes.html​

​<=​

小于等于

​https://docs.python.org/2/library/stdtypes.html​

​>=​

大于等于

​https://docs.python.org/2/library/stdtypes.html​

​np.array_equal(x,y)​

数组比较

​https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html​

举例:

# Using comparison operators will create boolean NumPy arrays
z = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
c = z < 6
print(c)
>>> [ True True True True True False False False False False]

基本的统计

操作

描述

文档

​np.mean(array)​

Mean

​https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean​

​np.median(array)​

Median

​https://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median​

​array.corrcoef()​

Correlation Coefficient

​https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html#numpy.corrcoef​

​np.std(array)​

Standard Deviation

​https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std​

举例

# Statistics of an array
a = np.array([1, 1, 2, 5, 8, 10, 11, 12])


# Standard deviation
print(np.std(a))
>>> 4.2938910093294167


# Median
print(np.median(a))
>>> 6.5

更多

操作

描述

文档

​array.sum()​

数组求和

​https://numpy.org/doc/stable/reference/generated/numpy.sum.html​

​array.min()​

数组求最小值

​https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html​

​array.max(axis=0)​

数组求最大值(沿着0轴)


​array.cumsum(axis=0)​

指定轴求累计和

​https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html​


切片和子集

操作

描述

文档

​array[i]​

索引i处的一维数组

​https://numpy.org/doc/stable/reference/arrays.indexing.html​

​array[i,j]​

索引在[i][j]处的二维数组

​https://numpy.org/doc/stable/reference/arrays.indexing.html​

​array[i<4]​

布尔索引

​https://numpy.org/doc/stable/reference/arrays.indexing.html​

​array[0:3]​

选择索引为 0, 1和 2

​https://numpy.org/doc/stable/reference/arrays.indexing.html​

​array[0:2,1]​

选择第0,1行,第1列

​https://numpy.org/doc/stable/reference/arrays.indexing.html​

​array[:1]​

选择第0行数据项 (与[0:1, :]相同)

​https://numpy.org/doc/stable/reference/arrays.indexing.html​

​array[1:2, :]​

选择第1行

​https://numpy.org/doc/stable/reference/arrays.indexing.html​

[comment]: <> "

​array[1,...]​

等同于 array[1,:,:]

​array[ : :-1]​

反转数组

同上

举例

b = np.array([(1, 2, 3), (4, 5, 6)])


# The index *before* the comma refers to *rows*,
# the index *after* the comma refers to *columns*
print(b[0:1, 2])
>>> [3]


print(b[:len(b), 2])
>>> [3 6]


print(b[0, :])
>>> [1 2 3]


print(b[0, 2:])
>>> [3]


print(b[:, 0])
>>> [1 4]


c = np.array([(1, 2, 3), (4, 5, 6)])
d = c[1:2, 0:2]
print(d)
>>> [[4 5]]

切片举例

import numpy as np
a1 = np.arange(0, 6)
a2 = np.arange(10, 16)
a3 = np.arange(20, 26)
a4 = np.arange(30, 36)
a5 = np.arange(40, 46)
a6 = np.arange(50, 56)
a = np.vstack((a1, a2, a3, a4, a5, a6))

生成矩阵和切片图示

简约而不简单|值得收藏的Numpy小抄表(含主要语法、代码)_python

简约而不简单|值得收藏的Numpy小抄表(含主要语法、代码)_html_02

小技巧

例子将会越来越多的,欢迎大家提交。

布尔索引 

# Index trick when working with two np-arrays
a = np.array([1,2,3,6,1,4,1])
b = np.array([5,6,7,8,3,1,2])


# Only saves a at index where b == 1
other_a = a[b == 1]
#Saves every spot in a except at index where b != 1
other_other_a = a[b != 1]
import numpy as np
x = np.array([4,6,8,1,2,6,9])
y = x > 5
print(x[y])
>>> [6 8 6 9]


# Even shorter
x = np.array([1, 2, 3, 4, 4, 35, 212, 5, 5, 6])
print(x[x < 5])
>>> [1 2 3 4 4]
  • 【参考】

​https://github.com/juliangaal/python-cheat-sheet​

简约而不简单|值得收藏的Numpy小抄表(含主要语法、代码)_python_03


标签:简约,numpy,小抄,html,https,np,org,array,Numpy
From: https://blog.51cto.com/u_15671528/5849340

相关文章

  • 8.numpy的回顾复习
    1,查看文档:shift+tab2,输入输出历史:InOut3.%time%timeit%%time%%timeitnumpy:     1,特点:数据类型相同的有序的数据集合,如果初始化的数据类型不同,......
  • 7.numpy的运算
    3.其他聚合操作FunctionNameNaN-safeVersionDescriptionnp.sum     np.nansum      Computesumofelementsnp.prod      np......
  • 6.numpy数据的常用操作 数组的变形,连接合并,分裂等
      3.变形   使用reshape函数,注意参数是一个tuple!#产生0-10的随机整数arr6=np.random.randint(0,10,size=(20))arr6array([2,8,9,6,2,6,6,1......
  • 5.numpy数组的索引和切片
    三、ndarray的基本操作  索引和切片1.索引维与列表完全一致多维时同理2.切片维与列表完全一致多维时同理将数据反转,例如[1,2,3]--->[3,2,1]两个::进行切片-------......
  • 4.numpy数组的构造和属性
    1.numpy数组用列表直接创建importnumpyasnpage=[15,16,18]#创建列表,后面赋值列表array3=np.array(age,dtype=np.float64)#用自带的np......
  • 3.numpy数组的基本概念
    一.创建Array使用np.array()由pythonlist创建C          数组的概念:数据类型一致的一个连续的内存空间pythonlist    列表(C语言说:列......
  • Python3.8多进程共享内存之Numpy数组
    在利用python处理数据的时候,想要充分发挥CPU的算力,可以选择利用多进程来实现。如果子进程内存占用较大的话,往往很难多开进程,如果不涉及对内存的写入操作,那么多个子进程共享......
  • Numpy 基础教程之Numpy的介绍
    1.多维数组介绍Numpy(NumericalPython的简称),是Python数值计算最重要的基础包之一,大多数提供科学计算的包都以Numpy的ndarray(多维数组)为构建基础。下面我们就通过一些......
  • 〖TensorFlow2.0笔记22〗使用Numpy在MNIST数据集上实现3层BP神经网络!
    使用Numpy在MNIST数据集上实现3层BP神经网络!本文章是TensorFlow2.0学习笔记系列,欢迎关注该,专栏链接:​​TensorFlow2.0学习笔记​​,文章会持续更细,多希望大家点赞收藏......
  • pkl中list,tensor, numpy占内存的大小
    pickle中可以存储list,tensor,array类型的数据但是tensor占的内存要比list和array大的多经测试,存储nuscenemini数据集的参数信息,tensor:39Marray:23Mlist:......