首页 > 其他分享 >YOLOV4网络

YOLOV4网络

时间:2022-11-12 21:23:14浏览次数:46  
标签:26 YOLOV4 conv self list 网络 channels size

Yolov4网络代码

from collections import OrderedDict
import torch
import torch.nn as nn
from Darknet_53 import darknet53

def conv(in_channels, out_channels, kernel_size, stride=1):
    pad = (kernel_size-1)//2 if kernel_size else 0
    return nn.Sequential(OrderedDict(
        [
            ("conv", nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=pad)),
            ("bn", nn.BatchNorm2d(out_channels)),
            ("relu", nn.LeakyReLU(0.1))
        ]
    ))
class SPP(nn.Module):
    def __init__(self, pool_sizes=[5, 9, 13]):
        super(SPP, self).__init__()
        self.maxpools = nn.ModuleList([nn.MaxPool2d(pool_size, 1, pool_size//2) for pool_size in pool_sizes])
    def forward(self, x):
        features = [maxpool(x) for maxpool in self.maxpools[::-1]]
        features = torch.cat(features + [x], dim=1)
        return features
class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Upsample, self).__init__()
        self.upsample = nn.Sequential(
            conv(in_channels=in_channels, out_channels=out_channels,kernel_size=1),
            nn.Upsample(scale_factor=2, mode="nearest")
        )
    def forward(self, x):
        x = self.upsample(x)
        return x
def conv_three(channels_list, in_channels):
    m = nn.Sequential(
        conv(in_channels=in_channels, out_channels=channels_list[0], kernel_size=1),
        conv(in_channels=channels_list[0], out_channels=channels_list[1], kernel_size=3),
        conv(in_channels=channels_list[1], out_channels=channels_list[0], kernel_size=1)
    )
    return m
def conv_five(channels_list, in_channels):
    m = nn.Sequential(
        conv(in_channels=in_channels, out_channels=channels_list[0], kernel_size=1),
        conv(in_channels=channels_list[0], out_channels=channels_list[1], kernel_size=3),
        conv(in_channels=channels_list[1], out_channels=channels_list[0], kernel_size=1),
        conv(in_channels=channels_list[0], out_channels=channels_list[1], kernel_size=3),
        conv(in_channels=channels_list[1], out_channels=channels_list[0], kernel_size=1)
    )
    return m
def Yolov4_head(channels_list, in_channels):
    m = nn.Sequential(
        conv(in_channels=in_channels, out_channels=channels_list[0], kernel_size=3),
        conv(in_channels=channels_list[0], out_channels=channels_list[1], kernel_size=1)
    )
    return m
class YoloBody(nn.Module):
    def __init__(self, anchors_mask, num_classes, pretrained = False):
        super(YoloBody, self).__init__()
        self.backbone = darknet53(pretrained)

        self.conv1=conv_three(channels_list=[512, 1024], in_channels=1024)
        self.spp = SPP()
        self.conv2=conv_three(channels_list=[512, 1024], in_channels=2048)

        self.upsample1 = Upsample(512, 256)
        self.conv_for_p4 = conv(in_channels=512, out_channels=256, kernel_size=1)
        self.make_five_conv1=conv_five(channels_list=[256, 512], in_channels=512)

        self.upsample2 = Upsample(in_channels=256, out_channels=128)
        self.conv_for_p3=conv(in_channels=256, out_channels=128, kernel_size=1)
        self.make_five_conv2=conv_five(channels_list=[128, 256], in_channels=256)

        # 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
        self.yolo_head3=Yolov4_head(channels_list= [256, len(anchors_mask[0]) * (5 + num_classes)], in_channels=128)

        self.down_sample1 = conv(in_channels=128, out_channels=256, kernel_size=3, stride=2)
        self.make_five_conv3 = conv_five(channels_list=[256, 512], in_channels=512)

        # 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
        self.yolo_head2 = Yolov4_head(channels_list=[512, len(anchors_mask[1]) * (5 + num_classes)], in_channels=256)

        self.down_sample2 = conv(in_channels=256, out_channels=512, kernel_size=3, stride=2)
        self.make_five_conv4 = conv_five(channels_list=[512, 1024], in_channels=1024)


        # 3*(5+num_classes)=3*(5+20)=3*(4+1+20)=75
        self.yolo_head1 = Yolov4_head(channels_list=[1024, len(anchors_mask[2]) * (5 + num_classes)], in_channels=512)

    def forward(self, x):
        x2, x1, x0 = self.backbone(x)

        # 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,2048
        p5 = self.conv1(x0)
        p5 = self.spp(p5)
        # 13,13,2048 -> 13,13,512 -> 13,13,1024 -> 13,13,512
        p5 = self.conv2(p5)

        # 13,13,512 -> 13,13,256 -> 26,26,256
        p5_upsample = self.upsample1(p5)
        # 26,26,512 -> 26,26,256
        p4 = self.conv_for_p4(x1)
        # 26,26,256 + 26,26,256 -> 26,26,512
        p4 = torch.cat([p4, p5_upsample], axis=1)
        # 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
        p4 = self.make_five_conv1(p4)

        # 26,26,256 -> 26,26,128 -> 52,52,128
        p4_upsample = self.upsample2(p4)
        # 52,52,256 -> 52,52,128
        p3 = self.conv_for_p3(x2)
        p3=torch.cat([p3, p4_upsample], axis=1)
        p3=self.make_five_conv2(p3)

        p3_downsample=self.down_sample1(p3)
        p4=torch.cat([p3_downsample, p4], axis=1)
        p4=self.make_five_conv3(p4)

        p4_downsample=self.down_sample2(p4)
        p5=torch.cat([p4_downsample, p5], axis=1)
        p5=self.make_five_conv4(p5)

        out2=self.yolo_head3(p3)
        out1=self.yolo_head2(p4)
        out0=self.yolo_head1(p5)

        return out0, out1, out2

# from torchsummary import summary
# yoloyolo=YoloBody(anchors_mask=["0","0","0"], num_classes=5, pretrained = False)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# summary(yoloyolo, input_size=(3, 416, 416))
# print(yoloyolo)

代码没有注释,欢迎留言共同讨论,顺便给个关注,感谢。

标签:26,YOLOV4,conv,self,list,网络,channels,size
From: https://www.cnblogs.com/QIAN-ONE/p/16884684.html

相关文章