计算机视觉研究院专栏
作者:Edison_G
背景&引言
文中指出DIoU要比GIou更加符合目标框回归的机制,将目标与anchor之间的距离,重叠率以及尺度都考虑进去,使得目标框回归变得更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题,并且方法能够简单地迁移到现有的算法中带来性能的提升,实验在YOLOv3上提升了5.91mAP。
其中B={x,y,w,h} 是预测框,
是 ground-truth。IoU是目标检测里面很重要的一个指标,通过预测的框和GT间的交集与并集的比例进行计算,经常用于评价bbox的优劣 。但一般对bbox的精调都采用L2范数,而一些研究表明这不是最优化IoU的方法,因此出现了IoU loss。
IoU Loss
IoU loss顾名思义就是直接通过IoU计算梯度进行回归,论文提到IoU loss的无法避免的缺点:当两个box无交集时,IoU=0,很近的无交集框和很远的无交集框的输出一样,这样就失去了梯度方向,无法优化。IoU loss的实现形式有很多种,除公式2外,还有UnitBox的交叉熵形式和IoUNet的Smooth-L1形式。
这里论文主要讨论的类似YOLO的检测网络,按照GT是否在cell判断当前bbox是否需要回归,所以可能存在无交集的情况。而一般的two stage网络,在bbox regress的时候都会卡,
不会对无交集的框进行回归。
GIoU Loss
上图可以很好的来说明GIoU不稳定以及收敛很慢的原因。上图中第一行三张图展示的是GIoU的回归过程,其中绿色框为目标框,黑色框为anchor,蓝色框为不同次数的迭代后,anchor的偏移结果。第二行三张图展示的是DIoU的回归过程,其中绿色框为目标框,黑色框为anchor,红色框为不同次数的迭代后,anchor的偏移结果。从图中我们可以看到,GIoU在回归的过程中,从损失函数的形式我们发现,当IoU为0时,GIoU会先尽可能让anchor能够和目标框产生重叠,之后GIoU会渐渐退化成IoU回归策略,因此整个过程会非常缓慢而且存在发散的风险。而DIoU考虑到anchor和目标之间的中心点距离,可以更快更有效更稳定的进行回归。
如上图中的包含情况,GIoU会退化成IoU(三个位置预测框和gt框所包围的最小面积相同,惩罚项c保持一致,梯度发散)。由于很大程度依赖IoU项,GIoU需要更多的迭代次数来收敛,特别是水平和垂直的bbox(后面会分析)。一般地,GIoU loss不能很好地收敛SOTA算法,反而造成不好的结果。
综合上面的分析,论文提出Distance-IoU(DIoU) loss,简单地在IoU loss基础上添加一个惩罚项,该惩罚项用于最小化两个bbox的中心点距离。如图1所示,DIoU收敛速度和效果都很好,而且DIoU能够用于NMS的计算中,不仅考虑了重叠区域,还考虑了中心点距离。另外,论文考虑bbox的三要素,重叠区域,中心点距离和长宽比,进一步提出了Complete IoU(CIoU) loss,收敛更快,效果更好。
知识回顾
IoU and GIoU Losses
为了全面地分析IoU loss和GIoU的性能,论文进行了模拟实验,模拟不同的距离、尺寸和长宽比的bbox的回归情况,如下图所示:
- 绿色框代表仿真实验需要回归的七个不同尺度的目标框,七个目标框的中心点坐标都是(10 * 10);
- 蓝色的点代表了所有anchor的中心点,中心点的分布如上图所示,各个方向都有,各种距离都有,当然每个anchor的一个中心点都包含有七个不同面积的anchor框。而且每个面积的anchor框又有七种不同的比例尺寸。因此一共有5000个蓝色点,对应5000*7*7个anchor框,并且每个anchor框都需要回归到七个gt目标框上,因此一共有5000*7*7*7个回归案例。
最终的实验结果如下:图中展示的训练同样的步数后(200步),IoU,GIoU以及本文提出的DIoU、CIoU作为loss的情况下,每个anchor的误差分布。
- IoU:从IoU误差的曲线我们可以发现,anchor越靠近边缘,误差越大,那些与目标框没有重叠的anchor基本无法回归;
- GIoU:从GIoU误差的曲线我们可以发现,对于一些没有重叠的anchor,GIoU的表现要比IoU更好。但是由于GIoU仍然严重的依赖IoU,因此在两个垂直方向,误差很大,基本很难收敛,这就是GIoU不稳定的原因;
- DIoU:从DIoU误差的曲线我们可以发现,对于不同距离,方向,面积和比例的anchor,DIoU都能做到较好的回归。
具体伪算法步骤如下:
论文将5000个中心点上的bbox在最后阶段的total error进行了可视化。IoU loss只对与target box有交集的bbox有效,因为无交集的bbox的梯度为0。而GIoU由于增加了惩罚函数,中间大部分区域错误率明显减少,但是垂直和水平的区域依然保持着高的error,这是由于GIoU的惩罚项经常很小甚至为0,导致训练需要更多的迭代来收敛。
计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!
扫码关注
计算机视觉研究院
公众号ID|ComputerVisionGzq
学习群|扫码在主页获取加入方式
标签:GIoU,loss,YOLOv3,DIoU,检测,IoU,DIou,bbox,anchor From: https://blog.51cto.com/u_15726357/5845288