导读
本期将介绍并演示基于MediaPipe的手势骨架与特征点提取步骤以及以此为基础实现手势识别的方法。
介绍
关于MediaPipe以前有相关文章介绍,可以参看下面链接:
Google开源手势识别--基于TF Lite/MediaPipe
它能做些什么?它支持的语言和平台有哪些?请看下面两张图:
我们主要介绍手势骨架与关键点提取,其他内容大家有兴趣自行学习了解。github地址:https://github.com/google/mediapipe
效果展示
手势骨架提取与关键点标注:
手势识别0~6:
实现步骤
具体可参考下面链接:
https://google.github.io/mediapipe/solutions/hands
(1) 安装mediapipe,执行pip install mediapipe
(2) 下载手势检测与骨架提取模型,地址:
https://github.com/google/mediapipe/tree/master/mediapipe/modules/hand_landmark
(3) 代码测试(摄像头实时测试):
import cv2
import mediapipe as mp
from os import listdir
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
min_detection_confidence=0.5, min_tracking_confidence=0.5)
cap = cv2.VideoCapture(0)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = hands.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cv2.imshow('result', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cv2.destroyAllWindows()
hands.close()
cap.release()
输出与结果:
图片检测(可支持多个手掌):
import cv2
import mediapipe as mp
from os import listdir
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
# For static images:
hands = mp_hands.Hands(
static_image_mode=True,
max_num_hands=5,
min_detection_confidence=0.2)
img_path = './multi_hands/'
save_path = './'
index = 0
file_list = listdir(img_path)
for filename in file_list:
index += 1
file_path = img_path + filename
# Read an image, flip it around y-axis for correct handedness output (see
# above).
image = cv2.flip(cv2.imread(file_path), 1)
# Convert the BGR image to RGB before processing.
results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Print handedness and draw hand landmarks on the image.
print('Handedness:', results.multi_handedness)
if not results.multi_hand_landmarks:
continue
image_hight, image_width, _ = image.shape
annotated_image = image.copy()
for hand_landmarks in results.multi_hand_landmarks:
print('hand_landmarks:', hand_landmarks)
print(
f'Index finger tip coordinates: (',
f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * image_width}, '
f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * image_hight})'
)
mp_drawing.draw_landmarks(
annotated_image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cv2.imwrite(
save_path + str(index) + '.png', cv2.flip(annotated_image, 1))
hands.close()
# For webcam input:
hands = mp_hands.Hands(
min_detection_confidence=0.5, min_tracking_confidence=0.5)
cap = cv2.VideoCapture(0)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cv2.imshow('result', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cv2.destroyAllWindows()
hands.close()
cap.release()
总结后续说明
总结:MediaPipe手势检测与骨架提取模型识别相较传统方法更稳定,而且提供手指关节的3D坐标点,对于手势识别与进一步手势动作相关开发有很大帮助。
其他说明:
(1) 手部关节点标号与排序定义如下图:
(2) 手部关节点坐标(x,y,z)输出为小于1的小数,需要归一化后显示到图像上,这部分可以查看上部分源码后转到定义查看,这里给出demo代码,另外Z坐标靠近屏幕增大,远离屏幕减小:
def Normalize_landmarks(image, hand_landmarks):
new_landmarks = []
for i in range(0,len(hand_landmarks.landmark)):
float_x = hand_landmarks.landmark[i].x
float_y = hand_landmarks.landmark[i].y
# Z坐标靠近屏幕增大,远离屏幕减小
float_z = hand_landmarks.landmark[i].z
print(float_z)
width = image.shape[1]
height = image.shape[0]
pt = mp_drawing._normalized_to_pixel_coordinates(float_x,float_y,width,height)
new_landmarks.append(pt)
return new_landmarks
(3) 基于此你可以做个简单额手势识别或者手势靠近远离屏幕的小程序,当然不仅要考虑关节点的坐标,可能还需要计算角度已经以前的状态等等,比如下面这样:
其他demo与相关代码均在知识星球主题中发布,需要的朋友可以加入获取。
标签:识别方法,--,image,手部,cv2,hand,mp,hands,landmarks From: https://blog.51cto.com/stq054188/5836326