首页 > 其他分享 >POJ 3580 SuperMemo

POJ 3580 SuperMemo

时间:2022-11-09 20:04:48浏览次数:53  
标签:3580 Count ch sz int void POJ find SuperMemo


Description



Your friend, Jackson is invited to a TV show called SuperMemo in which the participant is told to play a memorizing game. At first, the host tells the participant a sequence of numbers, {A1A2, ... An}. Then the host performs a series of operations and queries on the sequence which consists:

  1. ADD x y D: Add D to each number in sub-sequence {Ax ... Ay}. For example, performing "ADD 2 4 1" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5, 5}
  2. REVERSE x y: reverse the sub-sequence {Ax ... Ay}. For example, performing "REVERSE 2 4" on {1, 2, 3, 4, 5} results in {1, 4, 3, 2, 5}
  3. REVOLVE x y T: rotate sub-sequence {Ax ... AyT times. For example, performing "REVOLVE 2 4 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 2, 5}
  4. INSERT x P: insert P after Ax. For example, performing "INSERT 2 4" on {1, 2, 3, 4, 5} results in {1, 2, 4, 3, 4, 5}
  5. DELETE x: delete Ax. For example, performing "DELETE 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5}
  6. MIN x y: query the participant what is the minimum number in sub-sequence {Ax ... Ay}. For example, the correct answer to "MIN 2 4" on {1, 2, 3, 4, 5} is 2

To make the show more interesting, the participant is granted a chance to turn to someone else that means when Jackson feels difficult in answering a query he may call you for help. You task is to watch the TV show and write a program giving the correct answer to each query in order to assist Jackson whenever he calls.


Input



The first line contains (≤ 100000).

The following n lines describe the sequence.

Then follows M (≤ 100000), the numbers of operations and queries.

The following M lines describe the operations and queries.


Output



For each "MIN" query, output the correct answer.


Sample Input


5
1
2
3
4
5
2
ADD 2 4 1
MIN 4 5


Sample Output

5

解决完splay终极boss以后这种题写起来就十分轻松了。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<iostream>
#include<algorithm>
#include<bitset>
#include<functional>
using namespace std;
typedef unsigned long long ull;
typedef long long LL;
const int maxn = 1e5 + 10;
int n, m, root, a[maxn], l, r, c;
char s[20];

struct Splays
{
const static int maxn = 2e5 + 10; //节点个数
const static int INF = 0x7FFFFFFF; //int最大值
int ch[maxn][2], F[maxn], sz; //左右儿子,父亲节点和节点总个数
int A[maxn], S[maxn], C[maxn], R[maxn], I[maxn];
int Node(int f, int a) { S[sz] = 1; C[sz] = A[sz] = a; R[sz] = I[sz] = ch[sz][0] = ch[sz][1] = 0; F[sz] = f; return sz++; }//申请一个新节点
void clear(){ sz = 1; S[0] = ch[0][0] = ch[0][1] = F[0] = 0; C[0] = INF; }//清空操作
void Pushdown(int x)
{
if (R[x])
{
R[ch[x][0]] ^= 1; R[ch[x][1]] ^= 1;
swap(ch[x][0], ch[x][1]); R[x] = 0;
}
if (I[x])
{
if (ch[x][0]) A[ch[x][0]] += I[x], C[ch[x][0]] += I[x];
if (ch[x][1]) A[ch[x][1]] += I[x], C[ch[x][1]] += I[x];
I[ch[x][0]] += I[x]; I[ch[x][1]] += I[x]; I[x] = 0;
}
}
void Count(int x)
{
C[x] = min(A[x], min(C[ch[x][0]], C[ch[x][1]]));
S[x] = S[ch[x][0]] + S[ch[x][1]] + 1;
}
void rotate(int x, int k)
{
int y = F[x]; ch[y][!k] = ch[x][k]; F[ch[x][k]] = y;
if (F[y]) ch[F[y]][y == ch[F[y]][1]] = x;
F[x] = F[y]; F[y] = x; ch[x][k] = y;
C[x] = C[y]; S[x] = S[y]; Count(y);
}
void Splay(int x, int r)
{
for (int fa = F[r]; F[x] != fa;)
{
if (F[F[x]] == fa) { rotate(x, x == ch[F[x]][0]); return; }
int y = x == ch[F[x]][0], z = F[x] == ch[F[F[x]]][0];
y^z ? (rotate(x, y), rotate(x, z)) : (rotate(F[x], z), rotate(x, y));
}
}
void build(int fa, int &x, int l, int r)
{
if (l > r) return;
int mid = l + r >> 1;
x = Node(fa, a[mid]);
build(x, ch[x][0], l, mid - 1);
build(x, ch[x][1], mid + 1, r);
Count(x);
}
void find(int &x, int k)
{
for (int i = x; i;)
{
Pushdown(i);
if (S[ch[i][0]] > k) { i = ch[i][0]; continue; }
if (S[ch[i][0]] == k){ Splay(i, x); x = i; return; }
k -= S[ch[i][0]] + 1; i = ch[i][1];
}
}
void Add(int&x)
{
scanf("%d%d%d", &l, &r, &c);
find(x, l - 1); find(ch[x][1], r - l + 1);
int g = ch[ch[x][1]][0];
I[g] += c; A[g] += c; C[g] += c;
Count(ch[x][1]); Count(x);
}
void Reverse(int &x)
{
scanf("%d%d", &l, &r);
find(x, l - 1); find(ch[x][1], r - l + 1);
R[ch[ch[x][1]][0]] ^= 1;
}
void Revolve(int &x)
{
scanf("%d%d%d", &l, &r, &c);
find(x, l - 1); find(ch[x][1], r - l + 1);
int g = ch[ch[x][1]][0]; c %= (r - l + 1);
if (!c) return;
int s = r - l + 1 - c; find(g, s);
int t = ch[g][0]; ch[g][0] = 0; Count(g);
find(g, S[g] - 1); ch[g][1] = t; F[t] = g; Count(g);
}
void Insert(int &x)
{
scanf("%d%d", &l, &r);
find(x, l); find(ch[x][1], 0);
ch[ch[x][1]][0] = Node(ch[x][1], r);
Count(ch[x][1]); Count(x);
}
void Delete(int &x)
{
scanf("%d%d", &l);
find(x, l - 1); find(ch[x][1], 1);
ch[ch[x][1]][0] = 0;
Count(ch[x][1]); Count(x);
}
void Min(int &x)
{
scanf("%d%d", &l, &r);
find(x, l - 1); find(ch[x][1], r - l + 1);
printf("%d\n", C[ch[ch[x][1]][0]]);
}
}solve;


int main()
{
while (scanf("%d", &n) != EOF)
{
a[0] = a[n + 1] = root = 0; solve.clear();
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
solve.build(0, root, 0, n + 1);
scanf("%d", &m);
while (m--)
{
scanf("%s", s);
if (!strcmp(s, "ADD")) solve.Add(root);
if (!strcmp(s, "REVERSE")) solve.Reverse(root);
if (!strcmp(s, "REVOLVE")) solve.Revolve(root);
if (!strcmp(s, "INSERT")) solve.Insert(root);
if (!strcmp(s, "DELETE")) solve.Delete(root);
if (!strcmp(s, "MIN")) solve.Min(root);
}
}
return 0;
}



标签:3580,Count,ch,sz,int,void,POJ,find,SuperMemo
From: https://blog.51cto.com/u_15870896/5838694

相关文章

  • POJ 2478 Farey Sequence
    DescriptionTheFareySequenceFnforanyintegernwithn>=2isthesetofirreduciblerationalnumbersa/bwith0<a<b<=nandgcd(a,b)=1arrang......
  • POJ 3090 Visible Lattice Points
    DescriptionAlatticepoint(x, y)inthefirstquadrant(x and y areintegersgreaterthanorequalto0),otherthantheorigin,isvisiblefromtheor......
  • POJ 1284 Primitive Roots
    DescriptionWesaythatintegerx,0<x<p,isaprimitiverootmodulooddprimepifandonlyiftheset{(x i modp)|1<=i<=p-1}isequal......
  • POJ 2407 Relatives
    DescriptionGivenn,apositiveinteger,howmanypositiveintegerslessthannarerelativelyprimeton?Twointegersaandbarerelativelyprimeifth......
  • POJ 3970 Party
    DescriptionTheCEOofACM(AssociationofCryptographicMavericks)organizationhasinvitedallofhisteamstotheannualall-handsmeeting,beingaver......
  • SPOJ LCS Longest Common Substring
    DescriptionAstringisfinitesequenceofcharactersoveranon-emptyfinitesetΣ.Inthisproblem,Σisthesetoflowercaseletters.Substring,alsocalled......
  • SPOJ LCS2 Longest Common Substring II
    DescriptionAstringisfinitesequenceofcharactersoveranon-emptyfinitesetΣ.Inthisproblem,Σisthesetoflowercaseletters.Substring,alsocalled......
  • POJ 3458 Colour Sequence
    DescriptionWehaveapileofcardsconsistingof100cardsthatarecolouredonbothsides.Thereisafinitenumberofcolours(atmost26).Inadditionthe......
  • SPOJ 705 New Distinct Substrings
    DescriptionGivenastring,weneedtofindthetotalnumberofitsdistinctsubstrings.InputT-numberoftestcases.T<=20;Eachtestcaseconsistsofonestr......
  • POJ 1743 Musical Theme
    DescriptionAmusicalmelodyisrepresentedasasequenceofN(1<=N<=20000)notesthatareintegersintherange1..88,eachrepresentingakeyonthepi......