1021. Deepest Root (25)
时间限制
1500 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
对于不能成树的用并查集来判断,对于能成树的,随便选择一个点,找到最远点,所有最远点都可以是答案,然后随便找一个最远点,以这个点为根再找到全部最远点
那些点也是答案,然后排个序输出即可。至于为什么可以这么做,可以参考树的直径的证明。
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
const int INF = 0x7FFFFFFF;
const int maxn = 2e4 + 10;
vector<int> t[maxn];
int n, fa[maxn], x, y, cnt, ans[maxn], dis[maxn], maxd;
int get(int x)
{
return x == fa[x] ? x : fa[x] = get(fa[x]);
}
void dfs(int x, int y, int dep)
{
dis[x] = dep; maxd = max(maxd, dep);
for (int i = 0; i < t[x].size(); i++)
{
if (t[x][i] == y) continue;
dfs(t[x][i], x, dep + 1);
}
}
int main()
{
scanf("%d", &n); cnt = n;
for (int i = 1; i <= n; i++) fa[i] = i;
for (int i = 1; i < n; i++)
{
scanf("%d%d", &x, &y);
int fx = get(x), fy = get(y);
if (fx != fy) { fa[fx] = fy; cnt--; }
t[x].push_back(y); t[y].push_back(x);
}
if (cnt > 1) printf("Error: %d components\n", cnt);
else
{
cnt = 0;
dfs(1, 1, 0);
for (int i = 1; i <= n; i++) if (dis[i] == maxd) ans[cnt++] = i;
for (int i = 1; i <= n; i++) dis[i] = 0;
dfs(ans[0], ans[0], 0);
for (int i = 1; i <= n; i++) if (dis[i] == maxd) ans[cnt++] = i;
sort(ans, ans + cnt);
cnt = unique(ans, ans + cnt) - ans;
for (int i = 0; i < cnt; i++) printf("%d\n", ans[i]);
}
return 0;
}