Problem Description
The shorter, the simpler. With this problem, you should be convinced of this truth.
You are given an array
A of
N postive integers, and
M queries in the form
(l,r). A function
F(l,r) (1≤l≤r≤N) is defined as:
F(l,r)={AlF(l,r−1) modArl=r;l<r.
You job is to calculate
F(l,r), for each query
(l,r).
Input
There are multiple test cases.
The first line of input contains a integer
T, indicating number of test cases, and
T test cases follow.
For each test case, the first line contains an integer
N(1≤N≤100000).
The second line contains
N space-separated positive integers:
A1,…,AN (0≤Ai≤109).
The third line contains an integer
M denoting the number of queries.
The following
M lines each contain two integers
l,r (1≤l≤r≤N), representing a query.
Output
(l,r), output F(l,r)
Sample Input
1 3 2 3 3 1 1 3
Sample Output
2
求一个区间最左端的数对于右端的全部数字取模,由于每次取模至少减半,所以取模的次数不会很多,
用线段树来寻找右端小于等于当前值的第一个数字即可。
#include<set>
#include<map>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<bitset>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#define rep(i,j,k) for (int i = j; i <= k; i++)
#define per(i,j,k) for (int i = j; i >= k; i--)
#define loop(i,j,k) for (int i = j;i != -1; i = k[i])
#define lson x << 1, l, mid
#define rson x << 1 | 1, mid + 1, r
#define ff first
#define ss second
#define mp(i,j) make_pair(i,j)
#define pb push_back
#define pii pair<int,int>
#define in(x) scanf("%d", &x);
using namespace std;
typedef long long LL;
const int low(int x) { return x&-x; }
const double eps = 1e-8;
const int INF = 0x7FFFFFFF;
const int mod = 1e9 + 7;
const int N = 1e5 + 10;
int T, n, m,l,r;
int a[N],f[N<<2];
void build(int x,int l,int r)
{
if (l==r) {in(f[x]); a[l]=f[x];}
else
{
int mid=l+r>>1;
build(lson); build(rson);
f[x]=min(f[x<<1],f[x<<1|1]);
}
}
int find(int x,int l,int r,int ll,int rr,int u)
{
if (f[x] > u) return rr+1;
if (ll<=l&&r<=rr)
{
if (l==r) return l;
int mid=l+r>>1;
if (f[x<<1]<=u) return find(lson,ll,rr,u);
else return find(rson,ll,rr,u);
}
else
{
int mid=l+r>>1,res;
if (ll<=mid)
{
res=find(lson,ll,rr,u);
if (res<=rr) return res;
}
if (rr>mid)
{
res=find(rson,ll,rr,u);
if (res<=rr) return res;
}
return rr+1;
}
}
int main()
{
in(T);
while (T--)
{
scanf("%d",&n);
build(1,1,n);
scanf("%d",&m);
while (m--)
{
scanf("%d%d",&l,&r);
int ans=a[l];
while (l < r)
{
int q = find(1,1,n,l+1,r,ans);
if (q<=r) ans%=a[q]; l=q;
}
printf("%d\n",ans);
}
}
return 0;
}
标签:Function,HDU,return,rr,int,ll,5875,include,define From: https://blog.51cto.com/u_15870896/5838611