IO(Input/Output)
IO在计算机中指Input/Output,也就是输入和输出。由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等,就需要IO接口。
比如你打开浏览器,访问新浪首页,浏览器这个程序就需要通过网络IO获取新浪的网页。浏览器首先会发送数据给新浪服务器,告诉它我想要首页的HTML,这个动作是往外发数据,叫Output,随后新浪服务器把网页发过来,这个动作是从外面接收数据,叫Input。所以,通常,程序完成IO操作会有Input和Output两个数据流。当然也有只用一个的情况,比如,从磁盘读取文件到内存,就只有Input操作,反过来,把数据写到磁盘文件里,就只是一个Output操作。
IO编程中,Stream(流)是一个很重要的概念,可以把流想象成一个水管,数据就是水管里的水,但是只能单向流动。Input Stream就是数据从外面(磁盘、网络)流进内存,Output Stream就是数据从内存流到外面去。对于浏览网页来说,浏览器和新浪服务器之间至少需要建立两根水管,才可以既能发数据,又能收数据。
由于CPU和内存的速度远远高于外设的速度,所以,在IO编程中,就存在速度严重不匹配的问题。举个例子来说,比如要把100M的数据写入磁盘,CPU输出100M的数据只需要0.01秒,可是磁盘要接收这100M数据可能需要10秒,怎么办呢?有两种办法:
- 第一种是CPU等着,也就是程序暂停执行后续代码,等100M的数据在10秒后写入磁盘,再接着往下执行,这种模式称为同步IO;
- 另一种方法是CPU不等待,只是告诉磁盘,“您老慢慢写,不着急,我接着干别的事去了”,于是,后续代码可以立刻接着执行,这种模式称为异步IO。
同步和异步的区别就在于是否等待IO执行的结果。好比你去麦当劳点餐,你说“来个汉堡”,服务员告诉你,对不起,汉堡要现做,需要等5分钟,于是你站在收银台前面等了5分钟,拿到汉堡再去逛商场,这是同步IO。
你说“来个汉堡”,服务员告诉你,汉堡需要等5分钟,你可以先去逛商场,等做好了,我们再通知你,这样你可以立刻去干别的事情(逛商场),这是异步IO。
很明显,使用异步IO来编写程序性能会远远高于同步IO,但是异步IO的缺点是编程模型复杂。想想看,你得知道什么时候通知你“汉堡做好了”,而通知你的方法也各不相同。如果是服务员跑过来找到你,这是回调模式,如果服务员发短信通知你,你就得不停地检查手机,这是轮询模式。总之,异步IO的复杂度远远高于同步IO。
操作IO的能力都是由操作系统提供的,每一种编程语言都会把操作系统提供的低级C接口封装起来方便使用,Python也不例外。我们后面会详细讨论Python的IO编程接口。
进程和线程
现代操作系统比如Mac OS X,UNIX,Linux,Windows等,都是支持“多任务”的操作系统。
什么叫“多任务”呢?简单地说,就是操作系统可以同时运行多个任务。打个比方,你一边在用浏览器上网,一边在听MP3,一边在用Word赶作业,这就是多任务,至少同时有3个任务正在运行。还有很多任务悄悄地在后台同时运行着,只是桌面上没有显示而已。
现在,多核CPU已经非常普及了,但是,即使过去的单核CPU,也可以执行多任务。由于CPU执行代码都是顺序执行的,那么,单核CPU是怎么执行多任务的呢?
答案就是操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换到任务2,任务2执行0.01秒,再切换到任务3,执行0.01秒……这样反复执行下去。表面上看,每个任务都是交替执行的,但是,由于CPU的执行速度实在是太快了,我们感觉就像所有任务都在同时执行一样。
真正的并行执行多任务只能在多核CPU上实现,但是,由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务轮流调度到每个核心上执行。
对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程。
有些进程还不止同时干一件事,比如Word,它可以同时进行打字、拼写检查、打印等事情。在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”称为线程(Thread)。
由于每个进程至少要干一件事,所以,一个进程至少有一个线程。当然,像Word这种复杂的进程可以有多个线程,多个线程可以同时执行,多线程的执行方式和多进程是一样的,也是由操作系统在多个线程之间快速切换,让每个线程都短暂地交替运行,看起来就像同时执行一样。当然,真正地同时执行多线程需要多核CPU才可能实现。
如果我们要同时执行多个任务怎么办?
有两种解决方案:
- 一种是启动多个进程,每个进程虽然只有一个线程,但多个进程可以一块执行多个任务。
- 还有一种方法是启动一个进程,在一个进程内启动多个线程,这样,多个线程也可以一块执行多个任务。
- 当然还有第三种方法,就是启动多个进程,每个进程再启动多个线程,这样同时执行的任务就更多了,当然这种模型更复杂,实际很少采用。
总结一下就是,多任务的实现有3种方式:
- 多进程模式;
- 多线程模式;
- 多进程+多线程模式。
同时执行多个任务通常各个任务之间并不是没有关联的,而是需要相互通信和协调,有时,任务1必须暂停等待任务2完成后才能继续执行,有时,任务3和任务4又不能同时执行,所以,多进程和多线程的程序的复杂度要远远高于我们前面写的单进程单线程的程序。
因为复杂度高,调试困难,所以,不是迫不得已,我们也不想编写多任务。但是,有很多时候,没有多任务还真不行。想想在电脑上看电影,就必须由一个线程播放视频,另一个线程播放音频,否则,单线程实现的话就只能先把视频播放完再播放音频,或者先把音频播放完再播放视频,这显然是不行的。
小结
线程是最小的执行单元,而进程由至少一个线程组成。如何调度进程和线程,完全由操作系统决定,程序自己不能决定什么时候执行,执行多长时间。
多进程和多线程的程序涉及到同步、数据共享的问题,编写起来更复杂。
进程 vs. 线程
多进程和多线程,是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。
多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)著名的Apache最早就是采用多进程模式。
多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork
调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。
多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。
在Windows下,多线程的效率比多进程要高,所以微软的IIS服务器默认采用多线程模式。由于多线程存在稳定性的问题,IIS的稳定性就不如Apache。为了缓解这个问题,IIS和Apache现在又有多进程+多线程的混合模式。
线程切换
无论是多进程还是多线程,只要数量一多,效率肯定上不去,为什么呢?
我们打个比方,假设你不幸正在准备中考,每天晚上需要做语文、数学、英语、物理、化学这5科的作业,每项作业耗时1小时。
如果你先花1小时做语文作业,做完了,再花1小时做数学作业,这样,依次全部做完,一共花5小时,这种方式称为单任务模型,或者批处理任务模型。
假设你打算切换到多任务模型,可以先做1分钟语文,再切换到数学作业,做1分钟,再切换到英语,以此类推,只要切换速度足够快,这种方式就和单核CPU执行多任务是一样的了,以幼儿园小朋友的眼光来看,你就正在同时写5科作业。
但是,切换作业是有代价的,比如从语文切到数学,要先收拾桌子上的语文书本、钢笔(这叫保存现场),然后,打开数学课本、找出圆规直尺(这叫准备新环境),才能开始做数学作业。操作系统在切换进程或者线程时也是一样的,它需要先保存当前执行的现场环境(CPU寄存器状态、内存页等),然后,把新任务的执行环境准备好(恢复上次的寄存器状态,切换内存页等),才能开始执行。这个切换过程虽然很快,但是也需要耗费时间。如果有几千个任务同时进行,操作系统可能就主要忙着切换任务,根本没有多少时间去执行任务了,这种情况最常见的就是硬盘狂响,点窗口无反应,系统处于假死状态。
所以,多任务一旦多到一个限度,就会消耗掉系统所有的资源,结果效率急剧下降,所有任务都做不好。
计算密集型 vs. IO密集型
是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。
计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。
计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。
第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。
IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,几乎无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言开发效率最差。
异步IO
考虑到CPU和IO之间巨大的速度差异,一个任务在执行的过程中大部分时间都在等待IO操作,单进程单线程模型会导致别的任务无法并行执行,因此,我们才需要多进程模型或者多线程模型来支持多任务并发执行。
现代操作系统对IO操作已经做了巨大的改进,最大的特点就是支持异步IO。如果充分利用操作系统提供的异步IO支持,就可以用单进程单线程模型来执行多任务,这种全新的模型称为事件驱动模型,Nginx就是支持异步IO的Web服务器,它在单核CPU上采用单进程模型就可以高效地支持多任务。在多核CPU上,可以运行多个进程(数量与CPU核心数相同),充分利用多核CPU。由于系统总的进程数量十分有限,因此操作系统调度非常高效。用异步IO编程模型来实现多任务是一个主要的趋势。
在一个线程中,CPU执行代码的速度极快,然而,一旦遇到IO操作,如读写文件、发送网络数据时,就需要等待IO操作完成,才能继续进行下一步操作。这种情况称为同步IO。
在IO操作的过程中,当前线程被挂起,而其他需要CPU执行的代码就无法被当前线程执行了。
因为一个IO操作就阻塞了当前线程,导致其他代码无法执行,所以我们必须使用多线程或者多进程来并发执行代码,为多个用户服务。每个用户都会分配一个线程,如果遇到IO导致线程被挂起,其他用户的线程不受影响。
多线程和多进程的模型虽然解决了并发问题,但是系统不能无上限地增加线程。由于系统切换线程的开销也很大,所以,一旦线程数量过多,CPU的时间就花在线程切换上了,真正运行代码的时间就少了,结果导致性能严重下降。
由于我们要解决的问题是CPU高速执行能力和IO设备的龟速严重不匹配,多线程和多进程只是解决这一问题的一种方法。
另一种解决IO问题的方法是异步IO。当代码需要执行一个耗时的IO操作时,它只发出IO指令,并不等待IO结果,然后就去执行其他代码了。一段时间后,当IO返回结果时,再通知CPU进行处理。
可以想象如果按普通顺序写出的代码实际上是没法完成异步IO的,所以,同步IO模型的代码是无法实现异步IO模型的。
异步IO模型需要一个消息循环,在消息循环中,主线程不断地重复“读取消息-处理消息”这一过程。
消息模型其实早在应用在桌面应用程序中了。一个GUI程序的主线程就负责不停地读取消息并处理消息。所有的键盘、鼠标等消息都被发送到GUI程序的消息队列中,然后由GUI程序的主线程处理。
由于GUI线程处理键盘、鼠标等消息的速度非常快,所以用户感觉不到延迟。某些时候,GUI线程在一个消息处理的过程中遇到问题导致一次消息处理时间过长,此时,用户会感觉到整个GUI程序停止响应了,敲键盘、点鼠标都没有反应。这种情况说明在消息模型中,处理一个消息必须非常迅速,否则,主线程将无法及时处理消息队列中的其他消息,导致程序看上去停止响应。
消息模型是如何解决同步IO必须等待IO操作这一问题的呢?当遇到IO操作时,代码只负责发出IO请求,不等待IO结果,然后直接结束本轮消息处理,进入下一轮消息处理过程。当IO操作完成后,将收到一条“IO完成”的消息,处理该消息时就可以直接获取IO操作结果。
在“发出IO请求”到收到“IO完成”的这段时间里,同步IO模型下,主线程只能挂起,但异步IO模型下,主线程并没有休息,而是在消息循环中继续处理其他消息。这样,在异步IO模型下,一个线程就可以同时处理多个IO请求,并且没有切换线程的操作。对于大多数IO密集型的应用程序,使用异步IO将大大提升系统的多任务处理能力。
同步/异步 and 阻塞/非阻塞
真正意义上的异步IO是说内核直接将数据拷贝至用户态的内存单元,再通知程序直接去读取数据。
select / poll / epoll
都是同步IO的多路复用模式。
1.同步和异步
同步和异步关注的是消息通信机制。
所谓同步,就是在发出一个调用时,没得到结果之前,该调用就不返回。但是一旦调用返回就得到返回值了,调用者主动等待这个调用的结果**。
所谓异步,就是在发出一个调用时,这个调用就直接返回了,不管返回有没有结果。当一个异步过程调用发出后,被调用者通过状态,通知来通知调用者,或者通过回调函数处理这个调用。
2.阻塞和非阻塞
阻塞和非阻塞关注的是程序在等待调用结果时的状态。
阻塞调用是指调用结果返回之前,当前线程会被挂起。调用线程只有在得到结果之后才返回。
非阻塞调用是指在不能立即得到结果之前,该调用不会阻塞当前线程。
老张爱喝茶,废话不说,煮开水。 出场人物:老张,水壶两把(普通水壶,简称水壶;会响的水壶,简称响水壶)。
- 老张把水壶放到火上,立等水开。(同步阻塞) 立等就是阻塞了老张去干别的事,老张得一直主动的看着水开没,这是同步 。
- 老张把水壶放到火上,去客厅看电视,时不时去厨房看看水开没有。(同步非阻塞) 老张去看电视了,这就是非阻塞了,但是老张还是得关注着水开没,这就是同步了。
- 老张把响水壶放到火上,立等水开。(异步阻塞) 立等就是阻塞了老张去干别的事,但是老张不用时刻关注水开没,因为水开了,响水壶会提醒他,这就是异步了。
- 老张把响水壶放到火上,去客厅看电视,水壶响之前不再去看它了,响了再去拿壶。(异步非阻塞)老张去看电视了,这是非阻塞了,而且,等水开了,响水壶会提醒他,这就是异步了。
所谓同步异步,只是对于水壶而言。 普通水壶,同步;响水壶,异步。 虽然都能干活,但响水壶可以在自己完工之后,提示老张水开了。这是普通水壶所不能及的。 同步只能让调用者去轮询自己(情况2中),造成老张效率的低下。
所谓阻塞非阻塞,仅仅对于老张而言。 立等的老张,阻塞;看电视的老张,非阻塞。 情况1和情况3中老张就是阻塞的,媳妇喊他都不知道。虽然3中响水壶是异步的,可对于立等的老张没有太大的意义。所以一般异步是配合非阻塞使用的,这样才能发挥异步的效用。
分布式进程
在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。
标签:异步,阻塞,任务,线程,IO,进程,CPU From: https://www.cnblogs.com/milkchocolateicecream/p/18472763