首页 > 系统相关 >动态内存管理(含经典笔试题)

动态内存管理(含经典笔试题)

时间:2024-07-28 22:54:08浏览次数:16  
标签:malloc int void 笔试 free 内存 动态内存 经典 ptr

文章目录

1. 为什么要动态内存分配

我们已经掌握的内存开辟方式有:

int val = 20;//在栈空间上开辟四个字节
char arr[10] = { 0 };//在栈空间上开辟10个字节的连续空间

但是上述的开辟空间的方式有两个特点:

  • 空间开辟大小是固定的。

  • 数组在申明的时候,必须指定数组的长度,数组空间一旦确定了大小不能调整

但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。

C语言引入了动态内存开辟,让程序员自己可以申请和释放空间,就比较灵活了。

2. malloc 和 free

2.1 malloc

C语言提供了一个动态内存开辟的函数:

void* malloc (size_t size);

这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针

  • 如果开辟成功,则返回一个指向开辟好空间的指针。

  • 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查

  • 返回值的类型是void*,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。

  • 如果参数size0malloc的行为是标准是未定义的,取决于编译器。

2.2 free

C语言提供了另外一个函数free专门是用来做动态内存的释放和回收的,函数原型如下:

 void free (void* ptr);

free函数用来释放动态开辟的内存。

  • 如果参数ptr指向的空间不是动态开辟的,那free函数的行为是未定义的。

  • 如果参数ptrNULL指针,则函数什么事都不做

mallocfree都声明在stdlib.h头文件中。

举个例子:

#include <stdio.h>
#include <stdlib.h>
int main()
{
	int num = 0;
	scanf("%d", &num);
	int arr[num] = { 0 };
	int* ptr = NULL;
	ptr = (int*)malloc(num * sizeof(int));
	if (NULL != ptr)//判断ptr指针是否为空
	{
		int i = 0;
		for (i = 0; i < num; i++)
		{
			*(ptr + i) = 0;
		}
	}
	free(ptr);//释放ptr所指向的动态内存
	ptr = NULL;//是否有必要?
	return 0;
}

3. calloc 和 realloc

3.1 calloc

C语言还提供了一个函数叫calloccalloc函数也用来动态内存分配。原型如下:

void* calloc (size_t num, size_t size);
  • 函数的功能是为num个大小为size的元素开辟一块空间,并且把空间的每个字节初始化为0

  • 与函数malloc的区别只在于calloc会在返回地址之前把申请的空间的每个字节初始化为全0。

举个例子:

#include <stdio.h>
#include <stdlib.h>
int main()
{
	int* p = (int*)calloc(10, sizeof(int));
	if (NULL != p)
	{
		int i = 0;
		for (i = 0; i < 10; i++)
		{
			printf("%d ", *(p + i));
		}
	}
	free(p);
	p = NULL;
	return 0;
}

输出结果如下:

0 0 0 0 0 0 0 0 0 0

所以如果我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。

3.2 realloc

  • realloc函数的出现让动态内存管理更加灵活

  • 有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的使用内存,我们一定会对内存的大小做灵活的调整。那realloc函数就可以做到对动态开辟内存大小的调整。

函数原型如下:

void* realloc (void* ptr, size_t size);
  • ptr是要调整的内存地址

  • size调整之后新大小

  • 返回值为调整之后的内存起始位置。

  • 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。

  • realloc在调整内存空间的是存在两种情况:

    • 情况1:原有空间有足够大的空间用于调整
    • 情况2:原有空间没有足够大的空间用于调整

在这里插入图片描述

情况1:

当是情况1的时候,要扩展内存就直接在原有内存之后直接追加空间,原来空间的数据不发生变化。

情况2:

当是情况2的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找⼀个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。

由于上述的两种情况,realloc函数的使用就要注意一些。

#include <stdio.h>
#include <stdlib.h>
int main()
{
	int* ptr = (int*)malloc(100);
	if (ptr != NULL)
	{
		//业务处理
	}
	else
	{
		return 1;
	}
	//扩展容量

	//代码1 - 直接将realloc的返回值放到ptr中
	ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)

	//代码2 - 先将realloc函数的返回值放在p中,不为NULL,在放ptr中
	int* p = NULL;
	p = realloc(ptr, 1000);
	if (p != NULL)
	{
		ptr = p;
	}
	//业务处理
	free(ptr);
    ptr = NULL;
	return 0;
}

注:上述代码在扩展容量的时候,我们应该选择的是代码2,而不是代码1。因为代码1如果申请失败的话会导致将返回的空指针赋值给了原来指向数据的指针变量,这样会导致原有的数据会丢失,找不到了。而代码2避免了这种情况的发生。

4. 常见的动态内存的错误

4.1 对NULL指针的解引用操作

void test()
{
	int* p = (int*)malloc(INT_MAX / 4);
	*p = 20;//如果p的值是NULL,就会有问题
	free(p);
}

4.2 对动态开辟空间的越界访问

void test()
{
	int i = 0;
	int* p = (int*)malloc(10 * sizeof(int));
	if (NULL == p)
	{
		exit(EXIT_FAILURE);
	}
	for (i = 0; i <= 10; i++)
	{
		*(p + i) = i;//当i是10的时候越界访问
	}
	free(p);
}

4.3 对非动态开辟内存使用free函数释放

void test()
{
	int a = 10;
	int* p = &a;
	free(p);//ok?
}

4.4 使用free释放一块动态开辟内存的一部分

void test()
{
	int* p = (int*)malloc(100);
	p++;
	free(p);//p不再指向动态内存的起始位置
}

4.5 对同一块动态内存多次释放

void test()
{
	int* p = (int*)malloc(100);
	free(p);
	free(p);//重复释放
}

4.6 动态开辟内存忘记释放(内存泄漏)

void test()
{
	int* p = (int*)malloc(100);
	if (NULL != p)
	{
		*p = 20;
	}
}
int main()
{
	test();
	while (1);
}

忘记释放不再使用的动态开辟的空间会造成内存泄漏。

切记:动态开辟的空间一定要释放,并且正确释放。

5. 动态内存经典笔试题分析

5.1 题目1:

void GetMemory(char* p)
{
	p = (char*)malloc(100);
}
void Test(void)
{
	char* str = NULL;
	GetMemory(str);
	strcpy(str, "hello world");
	printf(str);
}

请问运行Test函数会有什么样的结果?

5.2 题目2:

char* GetMemory(void)
{
	char p[] = "hello world";
	return p;
}
void Test(void)
{
	char* str = NULL;
	str = GetMemory();
	printf(str);
}

请问运行Test函数会有什么样的结果?

5.3 题目3:

void GetMemory(char** p, int num)
{
	*p = (char*)malloc(num);
}
void Test(void)
{
	char* str = NULL;
	GetMemory(&str, 100);
	strcpy(str, "hello");
	printf(str);
}

请问运行Test函数会有什么样的结果?

5.4 题目4:

void Test(void)
{
	char* str = (char*)malloc(100);
	strcpy(str, "hello");
	free(str);
	if (str != NULL)
	{
		strcpy(str, "world");
		printf(str);
	}
}

请问运行Test函数会有什么样的结果?

6. 柔性数组

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。

C99 中,结构体中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

例如:

struct st_type
{
	int i;
	int a[0];//柔性数组成员
};

有些编译器会报错无法编译可以改成:

struct st_type
{
	int i;
	int a[];//柔性数组成员
};

6.1 柔性数组的特点

  • 结构体中的柔性数组成员前面必须至少一个其他成员

  • sizeof返回的这种结构大小不包括柔性数组的内存。

  • 包含柔性数组成员的结构体用malloc()函数进行内存的动态分配,并且分配的内存应该大于结构体的大小,以适应柔性数组的预期大小

例如:

typedef struct st_type
{
	int i;
	int a[0];//柔性数组成员
}type_a;
int main()
{
	printf("%d\n", sizeof(type_a));//输出的是4
	return 0;
}

6.2 柔性数组的使用

//代码1
#include <stdio.h>
#include <stdlib.h>
int main()
{
	int i = 0;
	type_a* p = (type_a*)malloc(sizeof(type_a) + 100 * sizeof(int));
	//业务处理
	p->i = 100;
	for (i = 0; i < 100; i++)
	{
		p->a[i] = i;
	}
	free(p);
	return 0;
}

这样柔性数组成员a,相当于获得了100个整型元素的连续空间

6.3 柔性数组的优势

上述的type_a结构也可以设计为下面的结构,也能完成同样的效果。

//代码2
#include <stdio.h>
#include <stdlib.h>
typedef struct st_type
{
	int i;
	int* p_a;
}type_a;

int main()
{
	type_a* p = (type_a*)malloc(sizeof(type_a));
	p->i = 100;
	p->p_a = (int*)malloc(p->i * sizeof(int));

	//业务处理
	for (i = 0; i < 100; i++)
	{
		p->p_a[i] = i;
	}

	//释放空间
	free(p->p_a);
	p->p_a = NULL;
	free(p);
	p = NULL;
	return 0;
}

上述代码1代码2可以完成同样的功能,但是方法1的实现有两个好处

第一个好处是:方便内存释放

如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。

第二个好处是:这样有利于访问速度

连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)

7. 总结C/C++中程序内存区域划分

在这里插入图片描述

C/C++程序内存分配的几个区域:

  1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。

《函数栈帧的创建和销毁》

  1. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表

  2. 数据段(静态区):(static)存放全局变量、静态数据。程序结束后由系统释放

  3. 代码段:存放函数体(类成员函数和全局函数)的二进制代码

标签:malloc,int,void,笔试,free,内存,动态内存,经典,ptr
From: https://blog.csdn.net/2301_80191662/article/details/140672165

相关文章

  • 【科大讯飞笔试题汇总】2024-07-27-科大讯飞秋招提前批(研发岗)-三语言题解(Cpp/Java/
    ......
  • 回顾贺炜的经典语录
    回顾贺炜的经典语录收集了中国最优秀解说员贺炜的经典语录,每次听到贺炜的解说,都有很深的感触文章目录回顾贺炜的经典语录经典语录合集经典语录合集1、一个真正的强者,在面对着非常严峻的形式,面对着命运的折磨的时候他们能够挽救自己,他们有坚强的神经,这个坚强的......
  • C#华为OD笔试题*3
    C#华为OD笔试题*3背景参加了一下华为OD笔试,共三道题特此记录一下前两道都对了,第三道还在研究之后更新。代码题目1  轮转寿司店办活动,假设5盘寿司价格分别为3141565,买其中一盘寿司则赠送下一盘价格小于他的寿司,最低价格不赠送,比如买14价格的寿司赠送6元的买5元......
  • C语言经典小游戏之三子棋
    目录一、代码思路二、代码实现1.菜单2.实现棋盘3.玩家下棋 4.电脑下棋5.判断输赢三、代码1.game.h代码3.game.c代码3.test.c代码 一、代码思路首先需要创建三个文件:test.c    //用于测试游戏的逻辑性game.c  //游戏代码的实现game.h  //游......
  • Fiddler学习】Fiddler教程,比较经典全面(转)
    https://github.com/gabrielxvx/zh-fiddler  简介Fiddler(中文名称:小提琴)是一个HTTP的调试代理,以代理服务器的方式,监听系统的Http网络数据流动,Fiddler可以也可以让你检查所有的HTTP通讯,设置断点,以及Fiddle所有的“进出”的数据(我一般用来抓包),Fiddler还包含一个简单却功能强......
  • 动态规划有哪些经典题目?
    动态规划(DynamicProgramming,DP)是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。在解决动态规划问题时,我们通常会将问题分解成多个阶段,每个阶段的状态都是由前一个或几个阶段的状态推导出来的。以下是一些经典的动态规划题目及其详细介绍:经典 1.钢条......
  • “星光领航”志愿服务队开展“品读红色经典”主题支教活动
    “星光领航”志愿服务队开展“品读红色经典”主题支教活动为提升学生们的综合素质,培养学生们的爱国主义精神,7月26日山东建筑大学“星光领航”志愿服务队前往唐官小区开展“品读红色经典,发扬爱国主义精神”为主题的支教活动。团队成员......
  • 吃水果-小红书2024笔试(codefun2000)
    题目链接吃水果-小红书2024笔试(codefun2000)题目内容在一个遥远的星球上,这颗星球上的果树非常奇特,同一条直线上的果树只会长出不同种类的水果。有一天塔子哥乘飞船来到了这里,由于他的食物不多了,于是他决定在这颗星球上进行补给。他发现了一个n棵果树长成的直线,其中第......
  • 经典CNN模型(九):MobileNetV3(PyTorch详细注释版)
    一.MobileNetV3神经网络介绍MobileNetV3是MobileNet系列的第三代模型,由Google在2019年提出,旨在进一步优化模型的效率和性能,特别是在移动设备和边缘计算设备上。与前一代相比,MobileNetV3引入了多项改进,包括使用神经架构搜索(NeuralArchitectureSearch,NAS)、自适......
  • Android笔试面试题AI答之控件Views(6)
    答案来着文心一言,仅供参考目录1.简述什么是RemoteViews?使用场景有哪些?RemoteViews的特性使用场景总结2.获取View宽高的几种方法?1.在`onWindowFocusChanged`方法中获取2.使用`ViewTreeObserver.OnGlobalLayoutListener`3.使用`ViewTreeObserver.OnPreDrawListene......