首页 > 数据库 >Redis-3-过期时间淘汰策略与内存淘汰策略

Redis-3-过期时间淘汰策略与内存淘汰策略

时间:2024-06-05 17:34:33浏览次数:27  
标签:策略 过期 counter Redis LFU 访问 LRU 淘汰

目录

参考:

深入解析Redis的LRU与LFU算法实现

浅谈 Redis 中的 LRU/LFU

近似LRU(NearlyLRU):一种基于随机采样的缓存淘汰策略

阿里面试官:来手写一下Redis的LRU算法 我当场懵了

Redis怎么给key设置过期时间?

1.Redis过期时间淘汰策略

为了避免内存不够用,所以Redis提供了这种key自动过期的方案。

过期时间淘汰策略(TTL,即Time To Live)是另一种缓存管理机制,用于自动移除那些已经达到过期时间的键。

Redis允许对每个键设置一个过期时间,当键的过期时间到达后,Redis会自动删除该键以释放内存。

常见设置过期时间的命令

# 设置过期时间:EXPIRE key seconds
EXPIRE mykey 60 # 设置 mykey 的过期时间为60秒
EXPIRE mykey 120 # 重新设置 mykey 的过期时间为 120 秒(覆盖)   

# 同时设置过期时间和值:SETEX key seconds value(原子操作)
SETEX mykey 60 "value" # 过期时间为60s,值为"value"

那么,既然部分key存在过期时间,怎么删除掉这些过期的key呢?

方法 描述 优点 缺点
惰性删除(Lazy Deletion) 每当访问一个键时,检查该键是否已过期,过期则删除 仅在访问时检查和删除键,不增加系统额外开销 低访问频率的键可能未及时删除,占用内存
定期删除(Periodic Deletion) 后台线程定期随机检查部分键并删除已过期的键 在不影响性能的情况下逐步清理过期键 大量键检查时可能对性能产生一定影响
主动过期扫描(Active Expiration Scanning) 每次命令执行时额外进行部分过期键检查,动态调整频率和数量 确保在高负载情况下也能清理过期键 需要动态调整以适应系统负载

1.1 惰性删除

惰性删除策略是在每次访问一个键时,Redis会检查该键是否已过期。如果键已过期,Redis会立即删除它并返回nil或相应的错误。

  • 优点

    • 资源效率高:只有在访问键时才进行检查和删除操作,不会增加系统额外的计算和内存开销。
    • 简单直接:实现简单,逻辑清晰。
  • 缺点

    • 低访问频率问题:对于很少访问的键,可能会存在过期键未被及时删除的问题,这些键会继续占用内存资源。

示例

SET mykey "value" EX 60  # 设置 mykey 的过期时间为 60 秒
GET mykey                # 如果在60秒后访问,mykey 已过期,将返回 nil 并删除该键

1.2 定期删除

定期删除策略是由Redis后台线程定期随机检查一部分设置了过期时间的键,并删除那些已过期的键。

默认情况下,Redis每秒会进行10次检查,每次随机抽取一定数量的键进行过期检查和删除。

  • 优点
    • 平衡负载:在不影响整体性能的情况下,逐步清理过期键。
    • 自动化:后台线程定期执行,无需人工干预。
  • 缺点
    • 性能影响:当需要检查的键数量较多时,可能对系统性能产生一定的影响。

实例

Redis的配置文件redis.conf中可以调整hz参数来控制定期删除操作的频率:

# 默认每秒进行10次检查
hz 10  

好,这里的定期就有点东西了。如果我们自己搞,有2个主要的问题点。

  • 定期,这个定期到底定多久?
  • 删除,key那么多,遍历删,不要命啦?

1.3 主动扫描

主动过期扫描策略是在每次命令执行时,Redis会额外进行一部分过期键检查。

这种策略会根据系统负载动态调整检查频率和数量,以适应当前的负载情况。

通过这种方式,即使在高负载情况下,Redis也能及时清理过期键。

  • 优点

    • 高效清理:确保在高负载情况下,也能有效清理过期键,维持系统性能。
    • 动态调整:能够根据系统当前的负载情况,动态调整检查频率和数量,优化资源使用。
  • 缺点

    • 复杂性:实现和配置较为复杂,需要根据具体负载情况进行调优。

2.Redis内存淘汰策略

内存实在是不够用了咋整?

Redis的淘汰策略(Eviction Policy)是当内存达到限制时,用于决定如何移除旧数据以腾出空间给新数据的方法。

官网说明:Redis Key Eviction

先来学习几个关键字:

  • allkeys:表示所有键都可能被移除,无论它们是否设置了过期时间。这种策略适用于所有键。
  • volatile:表示仅在设置了过期时间的键中选择移除。这种策略只会影响那些设置了TTL(过期时间)的键。
  • Recently:adv.最近;新近;近来
  • Frequently:adv.频繁地;经常地;时常
  • LRU(Least Recently Used):最近最少使用策略,移除最近最少被访问的键。适用于缓存系统,确保频繁访问的数据保留。
  • LFU(Least Frequently Used):最不经常使用策略,移除访问频率最低的键。适用于需要根据使用频率决定数据保留的场景。
  • idle time:空闲时间
策略 描述
noeviction 内存达到限制时,不再保存新值,返回错误。
allkeys-lru 移除最近最少使用的键(LRU),保留最近使用的键。
allkeys-lfu 移除使用频率最低的键(LFU),保留频繁使用的键。
volatile-lru 在设置了过期时间的键中使用LRU策略移除。
volatile-lfu 在设置了过期时间的键中使用LFU策略移除。
allkeys-random 随机移除任意键。
volatile-random 随机移除设置了过期时间的键。
volatile-ttl 移除设置了过期时间的键中剩余生存时间最短的键。

额,这个表格怎么记忆。

首先,我们有拒绝写策略noeviction。然后有,移除最短ttl的。

接着,针对allkeys、volatile两个大类,我们都有lru、lfu以及random三种策略。

2.1最大内存配置

# redis.conf 中的示例
maxmemory 100mb

或者命令行操作

# 使用命令行设置
CONFIG SET maxmemory 100mb

默认值为0,表示没有内存限制:

  • 64位系统:理论上没有设置内存限制。
  • 32位系统:隐式内存限制为3 GB。

额,那为啥32位系统要说个隐式的3GB呢。

4 GB的限制源于32位系统的地址空间设计。

32位系统的内存地址由32个比特(位)表示,因此可以表示的地址总数是2的32次方,也就是4,294,967,296个字节,即4 GB。

  • 地址空间:32位系统的地址空间总共4 GB。
  • 内核空间:操作系统内核会保留一部分地址空间(通常是1 GB),供系统使用。
  • 用户空间:剩下的3 GB地址空间供用户进程使用。

由于这部分限制,32位Redis实例实际上只能利用约3 GB的内存。

哈哈,那64咋就没说隐式多少G?我们看下2^64,换算下大概是17179869184GB,也就一百多亿吧。

2^64 = 18,446,744,073,709,551,616

64位真猛啊,真猛啊。

2.2 LRU 最近最少使用

Least Recently Used

如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很低。

嗯,反过来,如果一个key

例如下图这样:

image-20240603101435310

LRU 的核心就是将 keys 按照“最近一次被访问”的时间排序。

哇,排序,那用什么数据结构,咱又不懂。

不过,咱也有笨办法,不一定非得对时间排序。

简单一点,直接不记录时间,一个链表把数据串起来,每次访问到就移动到头节点,淘汰的时候直接选最尾端的淘汰。

2.2.1 传统LRU

一般而言,LRU算法的数据结构不会仅使用简单的队列或链表去缓存数据,而是会采用Hash表 + 双向链表的结构。

利用Hash表确保数据查找的时间复杂度是O(1),双向链表又可以使数据插入/删除等操作也是O(1)。

哇靠,哇靠,这里要注意!这里就是经验。

首先,我们容易知道,链表的查找是O(N),得走节点上一个个查下去才能找到元素。但是插入和删除很快,O(1)的,关键在于找到元素。

那么,有没有办法优化这个查找的O(N)?

可以在之前加上一层hash表,key是数据,value是地址。

我们再捋捋这种场景下的LRU

假设现在我要把节点A提前,按照前面我们的笨办法,我们链表一把梭时,得O(N)先找到A。

现在,我们有了hash表,直接hash一手,立马就有地址。

image-20240603101700888

2.2.2 Redis中的LRU

Redis内部只使用Hash表缓存了数据,并没有创建一个专门针对LRU算法的双向链表。

就是没有按我们前文的思路,查一次数据,我就给你改到某个链表头上这种操作。

为啥呢,根据网上的意思,就是作者觉得这个Object类已经很好了,够用了,特意精简成这样。

嗯,大哥的意思就是,咱难不成在Object类中加两个前后指针的字段,这是浪费内存。

那它的lru怎么处理的,关注Object类中的lru:LRU_BITS这个字段。

typedef struct redisObject {
    
    // type: 数据类型,占4位。
    unsigned type:4;
    
    // encoding: 编码方式,占4位。
    unsigned encoding:4;
    
    // LRU时间或LFU数据,占24位。
    // LRU: 相对于全局lru_clock的时间。
    // LFU: 最低8位为访问频率,最高16位为访问时间。
    unsigned lru:LRU_BITS; 
    
    // refcount: 引用计数。
    int refcount;
    
    // ptr: 指向实际数据的指针。
    void *ptr;
} robj;

lru字段解释:

  • LRU:当使用LRU策略时,lru字段存储的是相对于全局LRU时钟的时间戳。

  • LFU:当使用LFU策略时,lru字段的最低8位表示访问频率,最高16位表示访问时间。

好,注意,这里的24位时间戳,实际上不是时间戳,而是相对于Redis服务器全局时钟的偏移量。

好咯,反正主要关注的是最近用的,咱们的时钟偏移当成最近一次被访问时间也没问题的。

24位可以表示的范围是0到16,777,215,单位为s的时候,大概是194.18天,淘汰的场景够用了。

扯半天还是没说咋用的啊,没使用“提到链表头的操作”,咋实现待淘汰key的选择?

Redis的近似LRU算法:

Redis采用了一种近似算法,通过随机采样来达到效果。在保证性能的同时,接近真实的 LRU 行为。

好好好,又开始玄学了,采样都来了?

先看下具体的过程。

  • 候选池:维护一个固定大小的候选池(例如 16 个键),用于存储最久未访问的键。

  • 随机采样:每次随机抽取 N 个键(例如 5 个),检查它们的访问时间。

  • 挑选最差的键:在这 N 个键中,选择最近一次访问时间最久远的键作为淘汰候选。

  • 更新候选池:如果候选池未满,将键A直接放入池中。如果候选池已满,替换更差的键。

每次样本的数量可以在conf中调整,默认值是5。作者说5是在性能和准确性上权衡的值。

# 配置文件
maxmemory-samples 5

# 命令行
CONFIG SET MaxMemory-Samples<count>

大哥在官网放了图,说你看是差不多的(左上角是原始结果)。

image-20240603110518055

什么,内存和效率你占完了,都让大哥美上了。问题是,我懵了啊,这啥玩意采样法?

这里我还没误到,根据各种数据看起来,在精度要求不高的情况下,它确实是个好的选择。

2.2.3 LRU的缺点

LRU算法仅关注数据的访问时间或访问顺序,忽略了访问次数的价值,在淘汰数据过程中可能会淘汰掉热点数据。

image-20240603112441865

例如,这张图中,显示了某时间段内数据A、B、C的访问情况。

根据LRU的思想,关注时间,热点数据为:C>B>A

但是,结合实际角度来看,明显应该是B和A访问很频繁,即:B>A>C

基于这种问题,衍生除了LFU,通过频率来度量热点key。

2.3 访问频率最低

如果一个数据在近期被高频率地访问,那么在将来它被再访问的概率也会很高,而访问频率较低的数据将来很大概率不会再使用。

看6.3.2节,似乎数出现的次数就好了呀,实际上,咱们不能这样认为。

频率=次数/单位时间,在时间相同的情况下,是可以简单的数次数。

但是,咱们这个单位时间是不好把控的。

一年前,你爱打王者,最近两天玩了十来把第五人格,看似你已转战第五人格。其实我知道,你还是心心念念着王者。

image-20240603113414503

像这张图,A、B、C分别出现了5、4、4,但是如果考虑到时间,C和B离咱们更近,其实A、B、C三者的热点排序,不太好评估。

又例如:

假设有两个数据项A和B:

  • 数据项A:过去的访问频率为100次,最近一次访问时间较早。
  • 数据项B:过去的访问频率为2次,但最近一次访问时间较晚。

在LFU算法下,数据项B会被优先淘汰,因为它的访问频率低,即使最近一次访问时间较晚。

因此,LFU算法一般都会有一个时间衰减函数参与热度值的计算,兼顾访问时间的影响。

2.3.1 传统LFU

传统LFU算法实现的数据结构与LRU一样,也采用Hash表 + 双向链表的结构,数据在双向链表内按照热度值排序。

如果某个数据被访问,更新热度值之重新插入到链表合适的位置。

2.3.2 Redis的LFU

注意啊,这里是有历史的,咱们Redis是先有LRU,在4.0后引入了LFU。

Redis的LFU算法的实现,同样没有使用额外的数据结构,而是复用了redisObject数据结构的lru字段,把这24bit空间拆分成两部分去使用。

  • 高16位:访问时间
  • 低8位:访问频率

这里有2个注意点:

  • 由于记录时间戳在空间被压缩到16bit,所以LFU改成以分钟为单位,大概45.5天会出现数值折返,比LRU时钟周期短。
  • 低位的8bit用来记录热度值(counter),8bit空间最大值为255,直接用来记录该数据的访问总次数是明显不够用的。

看下Redis中热度值怎么计算的。

2.3.2.1 时间衰减函数

前面提到,这个热度值是跟时间有关系的。

Redis中LFUDecrAndReturn 函数用于根据时间衰减一个热度值 counter

unsigned long LFUDecrAndReturn(robj *o) {
    unsigned long ldt = o->lru >> 8;
    unsigned long counter = o->lru & 255;
    unsigned long num_periods = server.lfu_decay_time ? LFUTimeElapsed(ldt) / server.lfu_decay_time : 0;
    if (num_periods)
        counter = (num_periods > counter) ? 0 : counter - num_periods;
    return counter;
}

image-20240603122642482

python绘图代码

import matplotlib.pyplot as plt

# Define the LFUDecrAndReturn function in a more general form for plotting
def lfu_decrement(counter, elapsed_time, lfu_decay_time):
    num_periods = elapsed_time // lfu_decay_time if lfu_decay_time else 0
    if num_periods:
        counter = 0 if num_periods > counter else counter - num_periods
    return counter

# Example parameters for the plot
lfu_decay_time = 100  # Example decay time
initial_counter = 100  # Example initial counter value
time_values = np.linspace(0, 1000, 100)  # Time from 0 to 1000 in 100 steps

# Calculate the counter values over time
counter_values = [lfu_decrement(initial_counter, t, lfu_decay_time) for t in time_values]

# Plotting the function
plt.figure(figsize=(10, 6))
plt.plot(time_values, counter_values, label=f'Initial Counter = {initial_counter}, Decay Time = {lfu_decay_time}')
plt.xlabel('Elapsed Time')
plt.ylabel('Counter Value')
plt.title('Counter Value Over Time with LFUDecrAndReturn Function')
plt.legend()
plt.grid(True)
plt.show()

2.3.2.2 热度值函数

前面提到,由于只有8位,类加到255就不够用了,那么热度值怎么具体表示呢。

Redis实现了一个对数增量算法,当前计数器值越高,递增的概率就越小。

#define LFU_INIT_VAL 5
 
/* Logarithmically increment a counter. The greater is the current counter value
 * the less likely is that it gets really implemented. Saturate it at 255. */
uint8_t LFULogIncr(uint8_t counter) {
  if (counter == 255) return 255;
  
  // 随机数r 0到1之间的浮点数
  double r = (double)rand()/RAND_MAX;
  // 当前计数器值 减去 初始值LFU_INIT_VAL
  double baseval = counter - LFU_INIT_VAL;
  // 小于0置为0
  if (baseval < 0) baseval = 0;
  // 计算概率 p
  double p = 1.0/(baseval*server.lfu_log_factor+1);
  // 随机数 r 小于概率 p,则递增计数器 counter。
  if (r < p) counter++;
  return counter;
}

image-20240603124019788

python绘图代码

import matplotlib.pyplot as plt
import numpy as np

# Define the function for probability
def calculate_probability(counter, lfu_log_factor):
    LFU_INIT_VAL = 5
    baseval = counter - LFU_INIT_VAL
    if (baseval < 0):
        baseval = 0
    return 1.0 / (baseval * lfu_log_factor + 1)

# Generate x values (counter values) and y values (probability values)
counters = np.arange(0, 256)
lfu_log_factor = 0.1  # Example value for server.lfu_log_factor
probabilities = [calculate_probability(counter, lfu_log_factor) for counter in counters]

# Plotting the function
plt.figure(figsize=(10, 6))
plt.plot(counters, probabilities, label=f'LFU Log Factor = {lfu_log_factor}')
plt.xlabel('Counter Value')
plt.ylabel('Probability')
plt.title('Probability of Incrementing the Counter (LFULogIncr Function)')
plt.legend()
plt.grid(True)
plt.show()

2.3.2.3 总结

前面还是很抽象对不对,我们捋捋两个函数的作用。

  • 热度值函数:热度值在低访问次数时迅速增长,而在高访问次数时增长速度减缓。
  • 时间衰减函数:防止对象的热度值长期保持不变,通过定期减少对象的热度值来模拟对象热度的自然衰减。

2.4 区分LRU和LFU

所以,咱们怎么突然冒出来如此专业的两个词语,LRU和LFU?

这里的关键点是:热点数据

  • LRU适合的是相对平稳的数据。比如会话管理,清除那些不再活跃的会话数据
  • LFU适合的那种突然陡增的数据。比如某活动期间突然上升的xx热点数据。
策略 定义 适用场景 优点 缺点
LRU 淘汰最近最少使用的缓存项 - 用户访问记录
- 临时性数据缓存
- 会话管理
- 实现相对简单
- 保持热点数据
- 可能误淘汰将再次被频繁访问的缓存项
LFU 淘汰使用频率最少的缓存项 - 长生命周期数据
- 数据统计
- 内容推荐
- 保留使用频率高的缓存项
- 避免误淘汰重要数据
- 实现较复杂
- 访问模式变化时响应慢

标签:策略,过期,counter,Redis,LFU,访问,LRU,淘汰
From: https://www.cnblogs.com/yang37/p/18233449

相关文章

  • Redis-5-高可用
    Redis高可用高可用性(HighAvailability,HA)主要是为了确保系统在面对故障、负载变化等情况下仍能持续提供服务。HA场景下,主要是解决这些问题。问题问题描述解决方案单点故障如果只有一个Redis实例,当它发生故障时,整个系统将无法访问缓存数据,导致服务中断。通过主从......
  • Redis-4-持久化
    Redis持久化1.1为什么Redis是基于内存的,不保存的话,应用停止了后数据就不在了。持久化的诉求,主要是解决以下问题:防止数据丢失Redis是一个内存数据库,数据主要存储在内存中。如果没有持久化机制,一旦服务器宕机或重启,内存中的所有数据都会丢失。通过持久化,Redis可以在磁盘上保......
  • Redis 常用的数据结构简介与实例测试【Redis 系列二】
    〇、都有哪些数据结构?Redis提供了较为丰富的数据类型,常见的有五种:String(字符串),Hash(哈希),List(列表),Set(集合)、Zset(有序集合)。随着Redis版本的更新,后面又支持了四种数据类型:BitMap(2.2版新增)、HyperLogLog(2.8版新增)、GEO(3.2版新增)、Stream(5.0版新增)。本文将对以上数据类型,通......
  • Redis——Java的客户端
    Java的客户端在Redis官网中提供了各种语言的客户端,地址:https://redis.io/clientsjedisjedis的官网地址:https://github.com/redis/jedis1.引入依赖<dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>5.0......
  • 企业文件加密:数据保护的实战策略
    数据是企业的生命线,保护数据安全就是保护企业的竞争力。在众多数据保护措施中,文件加密因其直接有效而备受青睐。一、为何文件加密至关重要在数字化办公时代,企业机密和敏感数据的泄露可能带来毁灭性的后果。文件加密能够确保即使数据被盗,也无法被未授权者访问或解读。二、文件......
  • 用Redisson的延迟队列RDelayedQueue处理延迟任务或者定时任务
    什么是RedissonRedisson在基于NIO的Netty框架上,充分的利用了Redis键值数据库提供的一系列优势,在Java实用工具包中常用接口的基础上,为使用者提供了一系列具有分布式特性的常用工具类。什么是RDelayedQueue获取RDelayedQueue:public<V>RDelayedQueue<V>getDelayedQueue(R......
  • Redis常见操作
    部分摘自ANnianstriver2.Redis数据类型2.1五种常用数据类型介绍Redis存储的是key-value结构的数据,其中key是字符串类型,value有5种常用的数据类型:字符串string哈希hash列表list集合set有序集合sortedset/zset2.2各种数据类型特点 解释说明:......
  • 数据如何助力业务增长?这些策略你不能错过!
    在当今数字化快速发展的时代,数据已成为企业运营和决策的核心要素。作为企业的CIO或数字化转型高管,您深知数据的重要性,并渴望通过数据驱动业务增长。那么,如何利用数据驱动业务决策,提升业务效率和盈利能力呢?本文将为您揭示其中的奥秘。一、数据驱动业务的背景1.1数据驱动业务......
  • 【随便选,56种改进策略】仅需一行代码学会从入门到创新改进所有群智能优化算法-matlab
     引言根据“没有免费的午餐”,没有一个单一的群体智能优化算法可以解决所有的优化问题,每一个群体智能优化算法都有局限性和限制。所以很多学者根据自身的专业问题需求,对基础优化算法进行了改进和提升,以期获得更为优秀的性能。公众号也整理了56种常用的改进策略,提供了示例算......
  • 巧用CMake编译策略:C++二次开发中的Release与Debug模式切换秘籍
    往期本博主的C++精讲优质博文可通过这篇导航进行查找:《Lemo的C++精华博文导航:进阶、精讲、设计模式文章全收录》前言在C++二次开发的过程中,理解各种编译模式并能灵活切换,对于提升软件性能和调试效率至关重要。本文将深入讨论Debug与Release模式的区别、默认编......