首页 > 数据库 >Mysql八股

Mysql八股

时间:2024-03-26 22:47:50浏览次数:35  
标签:八股 log 记录 数据 事务 索引 Mysql redo

Mysql八股

1. 执行一条sql,都发生了什么过程?

执行一条 SQL 查询语句,期间发生了什么?

  • 连接器:建立连接,管理连接、校验用户身份;
  • 查询缓存:查询语句如果命中查询缓存则直接返回,否则继续往下执行。MySQL 8.0 已删除该模块;
  • 解析 SQL,通过解析器对 SQL 查询语句进行词法分析、语法分析,然后构建语法树,方便后续模块读取表名、字段、语句类型;
  • 执行 SQL:执行 SQL 共有三个阶段:
    • 预处理阶段:检查表或字段是否存在;将 select * 中的 * 符号扩展为表上的所有列。
    • 优化阶段:基于查询成本的考虑, 选择查询成本最小的执行计划;
    • 执行阶段:根据执行计划执行 SQL 查询语句,从存储引擎读取记录,返回给客户端;

查询语句执行流程

2. mysql一行数据如何存储的?

image-20240314202046796

一张数据库表的数据是保存在「 表名字.ibd 」的文件里的

表空间由段(segment)、区(extent)、页(page)、行(row)组成,InnoDB存储引擎的逻辑存储结构大致如下图:

img

  • 行:数据库表中的记录都是按行(row)进行存放的
  • 页:InnoDB 的数据是按「页」为单位来读写的,也就是说,当需要读一条记录的时候,并不是将这个行记录从磁盘读出来,而是以页为单位,将其整体读入内存。默认16KB,页有数据页,undo页、溢出页等。
  • 区:在表中数据量大的时候,为某个索引分配空间的时候就不再按照页为单位分配了,而是按照区(extent)为单位分配。这也是为了范围查询的时候能够顺序io
  • 段:段一般分为数据段、索引段和回滚段等。

行格式

img

记录的额外信息

  • 变长字段长度列表,只有一行数据中有变长字段时才会有,比如varchar,然后他是逆序存放各列的长度的,比如数据库中是name、age 那变成列表中会先存age在存name ,这样可以提高cache命中率。
  • NULL值列表,就是一个bitmap保存某列可能为null,数据表的字段都定义成 NOT NULL 的时候,就不会有该字段了。img
  • 记录头信息:有很多信息,比如标识此条数据是否被删除;下一条记录的位置;当前记录的类型(如B+树非叶子节点、最大值、最小值等)

记录的真实信息:

  • row_id:如果我们建表的时候指定了主键或者唯一约束列,那么就没有 row_id 隐藏字段了。
  • trx_id: 事务id,表示这个数据是由哪个事务生成的。 trx_id是必需的.
  • roll_pointer:这条记录上一个版本的指针, 与trx_id配合实现mvcc。

行溢出的时候,mysql如何处理:如果一个数据页存不了一条记录,InnoDB 存储引擎会自动将溢出的数据存放到「溢出页」中。有两种不同的处理格式,一种是真实数据只存放溢出页的地址,一种是真实数据只保留20字节存放溢出页的地址,其他也可以存放正常未溢出的数据。

3. 索引相关

索引分类

按数据结构:

  • B+Tree 索引,B+树更矮、只有叶子节点存数据,更适合范围查找。
  • HASH 索引
  • Full-Text 索引。

按物理结构:

  • 聚簇索引(主键索引),叶子存放真实数据。

  • 二级索引(辅助索引),叶子存放的是主键。

按字段特性:

  • 主键索引
  • 唯一索引
  • 普通索引 create index xxx on table_name
  • 前缀索引:字符类型字段的前几个字符建立的索引,如char、 varchar、binary、varbinary的前几个字符上。

按字段个数分类:

  • 单列索引
  • 联合索引,存在最左匹配原则
    • 比如,如果创建了一个 (a, b, c) 联合索引,如果查询条件是以下这几种,因为不符合最左匹配原则,所以就无法匹配上联合索引,联合索引就会失效:where b=2;where c=3;where b=2 and c=3;
    • 联合索引的最左匹配原则,在遇到范围查询(如 >、<)的时候,就会停止匹配,也就是范围查询的字段可以用到联合索引,但是在范围查询字段的后面的字段无法用到联合索引。注意,对于 >=、<=、BETWEEN、like 前缀匹配的范围查询,并不会停止匹配。
    • 索引下推(index condition pushdown):可以在联合索引遍历过程中,对联合索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。在执行 select * from table where a > 1 and b = 2 语句的时再查到a之后,需要回表的时候可以用到这个减少回表次数。
    • 建立联合索引时,要把区分度大的字段排在前面,这样区分度大的字段越有可能被更多的 SQL 使用到。区分度就是某个字段 column 不同值的个数「除以」表的总行数

创建索引

索引的好处是提高查询速度,但是也有缺点:需要占用物理空间;创建索引和维护索引要耗费时间;降低表的增删改效率,需要动态维护B+树的有序性。

什么时候适用索引?

  • 唯一字段
  • 经常用where查询条件的字段或者几个字段
  • 经常用group by 和order by字段的

什么时候不适用于索引?

  • where order by group by中用不到的
  • 字段的区分度不高的,比如性别,其实mysql中有查询优化器,当某个值在行中的百分比很高的时候会忽略索引,进行全表扫描。
  • 表数据太少
  • 经常更新的数据。

优化索引的思路

  • 前缀索引优化;使用前缀索引是为了减小索引字段大小,可以增加一个索引页中存储的索引值,有效提高索引的查询速度。
  • 覆盖索引优化;从二级索引中查询得到记录,而不需要通过聚簇索引查询获得,可以避免回表的操作。
  • 主键索引最好是自增的;因为每次插入一条新记录,都是追加操作,不需要重新移动数据,因此这种插入数据的方法效率非常高。另外,主键字段的长度不要太大,因为主键字段长度越小,意味着二级索引的叶子节点越小(二级索引的叶子节点存放的数据是主键值),这样二级索引占用的空间也就越小
  • 索引最好要not NULL;
    • 索引列存在 NULL 就会导致优化器在做索引选择的时候更加复杂,更加难以优化,因为可为 NULL 的列会使索引、索引统计和值比较都更复杂
    • NULL 值是一个没意义的值,但是它会占用物理空间,所以会带来的存储空间的问题,行格式里面有存储NULL值列表的地方。
  • 防止索引失效;
    • 当我们使用左或者左右模糊匹配的时候,也就是 like %xx 或者 like %xx%这两种方式都会造成索引失效;
    • 当我们在查询条件中对索引列做了计算、函数、类型转换操作,这些情况下都会造成索引失效;
    • 联合索引要能正确使用需要遵循最左匹配原则,也就是按照最左优先的方式进行索引的匹配,否则就会导致索引失效。
    • 在 WHERE 子句中,如果在 OR 前的条件列是索引列,而在 OR 后的条件列不是索引列,那么索引会失效。

img

查看执行计划的一些参数:

  • possible_keys 字段表示可能用到的索引;
  • key 字段表示实际用的索引,如果这一项为 NULL,说明没有使用索引;
  • key_len 表示索引的长度;
  • rows 表示扫描的数据行数。
  • type 表示数据扫描类型,执行效率从低到高:
    • All(全表扫描);
    • index(全索引扫描);
    • range(索引范围扫描);
    • ref(非唯一索引扫描);
    • eq_ref(唯一索引扫描);
    • const(结果只有一条的主键或唯一索引扫描)。
    • 需要说明的是 const 类型和 eq_ref 都使用了主键或唯一索引,不过这两个类型有所区别,const 是与常量进行比较,查询效率会更快,而 eq_ref 通常用于多表联查中
  • extra:有三种需要注意的
    • Using filesort :当查询语句中包含 group by 操作,而且无法利用索引完成排序操作的时候, 这时不得不选择相应的排序算法进行,甚至可能会通过文件排序,效率是很低的,所以要避免这种问题的出现。
    • Using temporary:使了用临时表保存中间结果,MySQL 在对查询结果排序时使用临时表,常见于排序 order by 和分组查询 group by。效率低,要避免这种问题的出现。
    • Using index:所需数据只需在索引即可全部获得,不须要再到表中取数据,也就是使用了覆盖索引,避免了回表操作,效率不错。

4.InnoDB 数据的组织格式

InnoDB 的数据是按「数据页」为单位来读写的,默认数据页大小为 16 KB。每个数据页之间通过双向链表的形式组织起来,物理上不连续,但是逻辑上连续。

数据页内包含用户记录,每个记录之间用单向链表的方式组织起来,为了加快在数据页内高效查询记录,设计了一个页目录,页目录存储各个槽(分组),且主键值是有序的,于是可以通过二分查找法的方式进行检索从而提高效率。

为了高效查询记录所在的数据页,InnoDB 采用 b+ 树作为索引,每个节点都是一个数据页。

mysql单表不超过2000w?
  • MySQL 的表数据是以页的形式存放的,页在磁盘中不一定是连续的。
  • 页的空间是 16K, 并不是所有的空间都是用来存放数据的,会有一些固定的信息,如,页头,页尾,页码,校验码等等。
  • 在 B+ 树中,叶子节点和非叶子节点的数据结构是一样的,区别在于,叶子节点存放的是实际的行数据,而非叶子节点存放的是主键和页号。
  • 索引结构不会影响单表最大行数,2000W 也只是推荐值,超过了这个值可能会导致 B + 树层级更高,影响查询性能。

5. Count(*)效率怎么样?

因为count主键还有个读行中数据的步骤,所以慢于count*

图片

ount(1)、 count(*)、 count(主键字段)在执行的时候,如果表里存在二级索引,优化器就会选择二级索引进行扫描。

所以,如果要执行 count(1)、 count(*)、 count(主键字段) 时,尽量在数据表上建立二级索引,这样优化器会自动采用 key_len 最小的二级索引进行扫描,相比于扫描主键索引效率会高一些。

再来,就是不要使用 count(字段) 来统计记录个数,因为它的效率是最差的,会采用全表扫描的方式来统计。如果你非要统计表中该字段不为 NULL 的记录个数,建议给这个字段建立一个二级索引。

为什么要通过遍历的方式来计数?

InnoDB 存储引擎是支持事务的,同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB 表“应该返回多少行”也是不确定的,所以无法像 MyISAM一样,只维护一个 row_count 变量。

如何优化?

  • 近似的获取,通过explain命令有个rows的大约值
  • 额外表保存计数值

6. 事务相关

事务特性

  • 原子性,通过undo log(回滚日志)保证的。
  • 隔离性,通过MVCC或者锁实现
  • 一致性,通过持久性+原子性+隔离性实现
  • 持久性,通过redo log(重做日志实现)实现

并发事务出现的问题

  • 脏读:就是一个事务A的修改还未提交的时候被另外一个事务B读到了,然后因为A还可能发生回滚,就会造成一些错误。
  • 不可重复读:在一个事务内多次读取同一个数据,如果出现前后两次读到的数据不一样的情况,就意味着发生了「不可重复读」现象。强调的是一个数据被改了
  • 幻读:在一个事务内多次查询某个符合查询条件的「记录数量」,如果出现前后两次查询到的记录数量不一样的情况,就意味着发生了「幻读」现象。强调的是数据附近的东西被改了,导致范围查找的时候变了。

事务隔离级别

  • 读未提交(*read uncommitted*),指一个事务还没提交时,它做的变更就能被其他事务看到;发生幻读、不可重复读、脏读
  • 读提交(*read committed*),指一个事务提交之后,它做的变更才能被其他事务看到;发生幻读、不可重复读
  • 可重复读(*repeatable read*),指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别;发生幻读
  • 串行化(*serializable* );会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;

MySQL InnoDB 引擎的默认隔离级别虽然是「可重复读」,但是它很大程度上避免幻读现象(并不是完全解决了,详见这篇文章 (opens new window),解决的方案有两种:

  • 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。
  • 针对当前读(select ... for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select ... for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。

Read View

Read View 具体由以下几个组成

img

  • m_ids :指的是在创建 Read View 时,当前数据库中「活跃事务」的事务 id 列表,注意是一个列表,“活跃事务”指的就是,启动了但还没提交的事务
  • min_trx_id :指的是在创建 Read View 时,当前数据库中「活跃事务」中事务 id 最小的事务,也就是 m_ids 的最小值。
  • max_trx_id :这个并不是 m_ids 的最大值,而是创建 Read View 时当前数据库中应该给下一个事务的 id 值,也就是全局事务中最大的事务 id 值 + 1;
  • creator_trx_id :指的是创建该 Read View 的事务的事务 id

除了这四个之外,在每行数据中还有两个隐藏列:

图片

  • trx_id,当一个事务对某条聚簇索引记录进行改动时,就会把该事务的事务 id 记录在 trx_id 隐藏列里
  • roll_pointer,每次对某条聚簇索引记录进行改动时,都会把旧版本的记录写入到 undo 日志中,然后这个隐藏列是个指针,指向每一个旧版本记录,于是就可以通过它找到修改前的记录。

在创建 Read View 后,我们可以将记录中的 trx_id 划分这三种情况:img

  • 如果记录的 trx_id 值小于 Read View 中的 min_trx_id 值,表示这个版本的记录是在创建 Read View 已经提交的事务生成的,所以该版本的记录对当前事务可见
  • 如果记录的 trx_id 值大于等于 Read View 中的 max_trx_id 值,表示这个版本的记录是在创建 Read View 才启动的事务生成的,所以该版本的记录对当前事务不可见
  • 如果记录的 trx_id 值在 Read View 的min_trx_id和max_trx_id之间,需要判断 trx_id 是否在 m_ids 列表中:
    • 如果记录的 trx_id m_ids 列表中,表示生成该版本记录的活跃事务依然活跃着(还没提交事务),所以该版本的记录对当前事务不可见
    • 如果记录的 trx_id 不在 m_ids列表中,表示生成该版本记录的活跃事务已经被提交,所以该版本的记录对当前事务可见

对于「读提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同:

  • 「读提交」隔离级别是在每个 select 都会生成一个新的 Read View,也意味着,事务期间的多次读取同一条数据,前后两次读的数据可能会出现不一致,因为可能这期间另外一个事务修改了该记录,并提交了事务。
  • 「可重复读」隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View,这样就保证了在事务期间读到的数据都是事务启动前的记录。

这两个隔离级别实现是通过「事务的 Read View 里的字段」和「记录中的两个隐藏列」的比对,来控制并发事务访问同一个记录时的行为,这就叫 MVCC(多版本并发控制)。

发生幻读的场景

第一个例子:对于快照读, MVCC 并不能完全避免幻读现象。因为当事务 A 更新了一条事务 B 插入的记录,那么事务 A 前后两次查询的记录条目就不一样了,所以就发生幻读。

第二个例子:对于当前读,如果事务开启后,并没有执行当前读,而是先快照读,然后这期间如果其他事务插入了一条记录,那么事务后续使用当前读进行查询的时候,就会发现两次查询的记录条目就不一样了,所以就发生幻读。

要避免这类特殊场景下发生幻读的现象的话,就是尽量在开启事务之后,马上执行 select ... for update 这类当前读的语句,因为它会对记录加 next-key lock,从而避免其他事务插入一条新记录。

7. mysql有哪些锁?

全局锁

执行后,整个数据库就处于只读状态了。全局锁主要应用于做全库逻辑备份,这样在备份数据库期间,不会因为数据或表结构的更新,而出现备份文件的数据与预期的不一样。如果数据库的引擎支持的事务支持可重复读的隔离级别,那么在备份数据库之前先开启事务,会先创建 Read View,然后整个事务执行期间都在用这个 Read View,而且由于 MVCC 的支持,备份期间业务依然可以对数据进行更新操作。

表级锁

  • 表锁;
  • 元数据锁(MDL);MDL 是为了保证当用户对表执行 CRUD 操作时,防止其他线程对这个表结构做了变更。
    • 对一张表进行 CRUD 操作时,加的是 MDL 读锁;对一张表做结构变更操作的时候,加的是 MDL 写锁
    • MDL 是在事务提交后才会释放,这意味着事务执行期间,MDL 是一直持有的。所以为了能安全的对表结构进行变更,在对表结构变更前,先要看看数据库中的长事务,是否有事务已经对表加上了 MDL 读锁,如果可以考虑 kill 掉这个长事务,然后再做表结构的变更。不然可能会出现因为更改表结构诱发的后续CRUD都被阻塞了。
  • 意向锁;意向锁之间也不会发生冲突,只会和共享表锁(*lock tables ... read*)和独占表锁(*lock tables ... write*)发生冲突。
    • 在使用 InnoDB 引擎的表里对某些记录加上「共享锁」之前,需要先在表级别加上一个「意向共享锁」;
    • 在使用 InnoDB 引擎的表里对某些纪录加上「独占锁」之前,需要先在表级别加上一个「意向独占锁」;
    • 意向锁的目的是为了快速判断表里是否有记录被加锁
  • AUTO-INC 锁;锁不是再一个事务提交后才释放,而是再执行完插入语句后就会立即释放。在插入数据时,会加一个表级别的 AUTO-INC 锁。
    • 在 MySQL 5.1.22 版本开始,InnoDB 存储引擎提供了一种轻量级的锁来实现自增。一样也是在插入数据的时候,会为被 AUTO_INCREMENT 修饰的字段加上轻量级锁,然后给该字段赋值一个自增的值,就把这个轻量级锁释放了,而不需要等待整个插入语句执行完后才释放锁
    • 如果单单使用轻量级锁,binlog设置为statement 会在主从复制的时候出现并发数据一致性问题。
    • 当 innodb_autoinc_lock_mode = 2 时,并且 binlog_format = row,既能提升并发性,又不会出现数据一致性问题

行级锁

  • Record Lock,记录锁,也就是仅仅把一条记录锁上;细分为读锁(S)和写锁(X)。
  • Gap Lock,间隙锁,锁定一个范围,但是不包含记录本身;间隙锁之间是兼容的,即两个事务可以同时持有包含共同间隙范围的间隙锁,并不存在互斥关系,因为间隙锁的目的是防止插入幻影记录而提出的
  • Next-Key Lock:Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。如果一个事务获取了 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,是会被阻塞的
  • 插入意向锁:名字虽然有意向锁,但是它并不是意向锁,它是一种特殊的间隙锁,属于行级别锁
    • 一个事务在插入一条记录的时候,需要判断插入位置是否已被其他事务加了间隙锁(next-key lock 也包含间隙锁)。如果有的话,插入操作就会发生阻塞,直到拥有间隙锁的那个事务提交为止(释放间隙锁的时刻),在此期间会生成一个插入意向锁,表明有事务想在某个区间插入新记录,但是现在处于等待状态。

8.mysql的死锁问题

img

上面会发生死锁。两个事务即使生成的间隙锁的范围是一样的,也不会发生冲突,因为间隙锁目的是为了防止其他事务插入数据,因此间隙锁与间隙锁之间是相互兼容的。

在执行插入语句时,如果插入的记录在其他事务持有间隙锁范围内,插入语句就会被阻塞,因为插入语句在碰到间隙锁时,会生成一个插入意向锁,然后插入意向锁和间隙锁之间是互斥的关系。

如果两个事务分别向对方持有的间隙锁范围内插入一条记录,而插入操作为了获取到插入意向锁,都在等待对方事务的间隙锁释放,于是就造成了循环等待,满足了死锁的四个条件:互斥、占有且等待、不可强占用、循环等待,因此发生了死锁。

9. mysql中的日志

undolog

undo log 两大作用:

  • 实现事务回滚,保障事务的原子性。事务处理过程中,如果出现了错误或者用户执 行了 ROLLBACK 语句,MySQL 可以利用 undo log 中的历史数据将数据恢复到事务开始之前的状态。
  • 实现 MVCC(多版本并发控制)关键因素之一。MVCC 是通过 ReadView + undo log 实现的。undo log 为每条记录保存多份历史数据,MySQL 在执行快照读(普通 select 语句)的时候,会根据事务的 Read View 里的信息,顺着 undo log 的版本链找到满足其可见性的记录。

buffer pool

InnoDB 会把存储的数据划分为若干个「页」,以页作为磁盘和内存交互的基本单位,一个页的默认大小为 16KB。因此,Buffer Pool 同样需要按「页」来划分。

在 MySQL 启动的时候,InnoDB 会为 Buffer Pool 申请一片连续的内存空间,然后按照默认的16KB的大小划分出一个个的页, Buffer Pool 中的页就叫做缓存页。此时这些缓存页都是空闲的,之后随着程序的运行,才会有磁盘上的页被缓存到 Buffer Pool 中。

img

redo log

redo log 是物理日志,记录了某个数据页做了什么修改,比如对 XXX 表空间中的 YYY 数据页 ZZZ 偏移量的地方做了AAA 更新,每当执行一个事务就会产生这样的一条或者多条物理日志。

在事务提交时,只要先将 redo log 持久化到磁盘即可,可以不需要等到将缓存在 Buffer Pool 里的脏页数据持久化到磁盘。

在内存修改 Undo 页面后,需要记录对应的 redo log

redo log和undo log的区别

  • redo log 记录了此次事务「完成后」的数据状态,记录的是更新之后的值;
  • undo log 记录了此次事务「开始前」的数据状态,记录的是更新之前的值;

为什么需要redo log?

  • 实现事务的持久性,让 MySQL 有 crash-safe 的能力,能够保证 MySQL 在任何时间段突然崩溃,重启后之前已提交的记录都不会丢失;
  • 将写操作从「随机写」变成了「顺序写」,提升 MySQL 写入磁盘的性能。这个是因为redo log 是追加写
redo log的刷盘时机

主要有以下几个:

  • MySQL 正常关闭时;
  • 当 redo log buffer 中记录的写入量大于 redo log buffer 内存空间的一半时,会触发落盘;
  • InnoDB 的后台线程每隔 1 秒,将 redo log buffer 持久化到磁盘。
  • 每次事务提交时都将缓存在 redo log buffer 里的 redo log 直接持久化到磁盘(这个策略可由 参数控制)。

详细说一下innodb_flush_log_at_trx_commit :

  • 当设置该参数为 0 时,表示每次事务提交时 ,还是将 redo log 留在 redo log buffer 中 ,该模式下在事务提交时不会主动触发写入磁盘的操作。
  • 当设置该参数为 1 时,表示每次事务提交时,都将缓存在 redo log buffer 里的 redo log 直接持久化到磁盘,这样可以保证 MySQL 异常重启之后数据不会丢失。
  • 当设置该参数为 2 时,表示每次事务提交时,都只是缓存在 redo log buffer 里的 redo log 写到 redo log 文件,注意写入到「 redo log 文件」并不意味着写入到了磁盘,因为操作系统的文件系统中有个 Page Cache,Page Cache 是专门用来缓存文件数据的,所以写入「 redo log文件」意味着写入到了操作系统的文件缓存。

InnoDB 的后台线程每隔 1 秒:

  • 针对参数 0 :会把缓存在 redo log buffer 中的 redo log ,通过调用 write() 写到操作系统的 Page Cache,然后调用 fsync() 持久化到磁盘。所以参数为 0 的策略,MySQL 进程的崩溃会导致上一秒钟所有事务数据的丢失;
  • 针对参数 2 :调用 fsync,将缓存在操作系统中 Page Cache 里的 redo log 持久化到磁盘。所以参数为 2 的策略,较取值为 0 情况下更安全,因为 MySQL 进程的崩溃并不会丢失数据,只有在操作系统崩溃或者系统断电的情况下,上一秒钟所有事务数据才可能丢失

redolog会写满么?默认情况下, InnoDB 存储引擎有 1 个重做日志文件组( redo log Group),「重做日志文件组」由有 2 个 redo log 文件组成,两者组成一个环形的区域,两个指针指示当前的状态,如果写指针追上了清除指针,那就是满了,此时mysql会阻塞,等待buffer pool中的脏页数据被写回到磁盘。

bin log

redo log和bin log的区别?

  • 适用对象不一样:redo log是 Innodb 存储引擎实现的日志;而bin log是server层实现的日志,所有引擎都可以用。
  • 文件格式不同:
    • redo log是物理日志,记录的是在某个数据页做了什么修改
    • bin log有 3 种格式类型,分别是 STATEMENT(默认格式,指记录每一条修改数据的 SQL 语句,在从库上执行的时候可能会带来数据不一致的结果,比如uuid和并发执行顺序的问题)、ROW(记录行数据最终被修改成什么样了)、 MIXED(两者结合)
  • 写入方式不同: redo log是循环写,bin log是追加写,写完会新建文件继续写
  • 用途不同:bin log用于备份恢复、主从复制(比如如果你把数据库数据都删除了,只能通过bin log来恢复了);redo log用于掉电故障恢复

主从复制怎么实现的?

MySQL 主从复制过程

  • MySQL 主库在收到客户端提交事务的请求之后,会先写入 binlog,再提交事务,更新存储引擎中的数据,事务提交完成后,返回给客户端“操作成功”的响应。
  • 从库会创建一个专门的 I/O 线程,连接主库的 log dump 线程,来接收主库的 binlog 日志,再把 binlog 信息写入 relay log 的中继日志里,再返回给主库“复制成功”的响应。
  • 从库会创建一个用于回放 binlog 的线程,去读 relay log 中继日志,然后回放 binlog 更新存储引擎中的数据,最终实现主从的数据一致性。
bin log刷盘时机

事务执行过程中,先把日志写到 binlog cache(Server 层的 cache),事务提交的时候,再把 binlog cache 写到 binlog 文件中。MySQL 给每个线程分配了一片内存用于缓冲 binlog ,该内存叫 binlog cache。

MySQL提供一个 sync_binlog 参数来控制数据库的 binlog 刷到磁盘上的频率:

  • sync_binlog = 0 的时候,表示每次提交事务都只 write,不 fsync,后续交由操作系统决定何时将数据持久化到磁盘;
  • sync_binlog = 1 的时候,表示每次提交事务都会 write,然后马上执行 fsync;
  • sync_binlog =N(N>1) 的时候,表示每次提交事务都 write,但累积 N 个事务后才 fsync。

执行更新的整个过程

当优化器分析出成本最小的执行计划后,执行器就按照执行计划开始进行更新操作。

具体更新一条记录 UPDATE t_user SET name = 'xiaolin' WHERE id = 1; 的流程如下:

  1. 执行器负责具体执行,会调用存储引擎的接口,通过主键索引树搜索获取 id = 1 这一行记录:
    • 如果 id=1 这一行所在的数据页本来就在 buffer pool 中,就直接返回给执行器更新;
    • 如果记录不在 buffer pool,将数据页从磁盘读入到 buffer pool,返回记录给执行器。
  2. 执行器得到聚簇索引记录后,会看一下更新前的记录和更新后的记录是否一样:
    • 如果一样的话就不进行后续更新流程;
    • 如果不一样的话就把更新前的记录和更新后的记录都当作参数传给 InnoDB 层,让 InnoDB 真正的执行更新记录的操作;
  3. 开启事务, InnoDB 层更新记录前,首先要记录相应的 undo log,因为这是更新操作,需要把被更新的列的旧值记下来,也就是要生成一条 undo log,undo log 会写入 Buffer Pool 中的 Undo 页面,不过在内存修改该 Undo 页面后,需要记录对应的 redo log。
  4. InnoDB 层开始更新记录,会先更新内存(同时标记为脏页),然后将记录写到 redo log 里面,这个时候更新就算完成了。为了减少磁盘I/O,不会立即将脏页写入磁盘,后续由后台线程选择一个合适的时机将脏页写入到磁盘。这就是 WAL 技术,MySQL 的写操作并不是立刻写到磁盘上,而是先写 redo 日志,然后在合适的时间再将修改的行数据写到磁盘上。
  5. 至此,一条记录更新完了。
  6. 在一条更新语句执行完成后,然后开始记录该语句对应的 binlog,此时记录的 binlog 会被保存到 binlog cache,并没有刷新到硬盘上的 binlog 文件,在事务提交时才会统一将该事务运行过程中的所有 binlog 刷新到硬盘。
  7. 事务提交(为了方便说明,这里不说组提交的过程,只说两阶段提交):
    • prepare 阶段:将 redo log 对应的事务状态设置为 prepare,然后将 redo log 刷新到硬盘;
    • commit 阶段:将 binlog 刷新到磁盘,接着调用引擎的提交事务接口,将 redo log 状态设置为 commit(将事务设置为 commit 状态后,刷入到磁盘 redo log 文件);
  8. 至此,一条更新语句执行完成。

为什么需要两阶段提交?

事务提交后,redo log 和 binlog 都要持久化到磁盘,但是这两个是独立的逻辑,可能出现半成功的状态,这样就造成两份日志之间的逻辑不一致。

在持久化 redo log 和 binlog 这两份日志的时候,如果出现半成功的状态,就会造成主从环境的数据不一致性。这是因为 redo log 影响主库的数据,binlog 影响从库的数据,所以 redo log 和 binlog 必须保持一致才能保证主从数据一致。

事务的提交过程有两个阶段,就是将 redo log 的写入拆成了两个步骤:prepare 和 commit,中间再穿插写入binlog,具体如下:

  • prepare 阶段:将 XID(内部 XA 事务的 ID) 写入到 redo log,同时将 redo log 对应的事务状态设置为 prepare,然后将 redo log 持久化到磁盘(innodb_flush_log_at_trx_commit = 1 的作用);
  • commit 阶段:把 XID 写入到 binlog,然后将 binlog 持久化到磁盘(sync_binlog = 1 的作用),接着调用引擎的提交事务接口,将 redo log 状态设置为 commit,此时该状态并不需要持久化到磁盘,只需要 write 到文件系统的 page cache 中就够了,因为只要 binlog 写磁盘成功,就算 redo log 的状态还是 prepare 也没有关系,一样会被认为事务已经执行成功;

两阶段提交虽然保证了两个日志文件的数据一致性,但是性能很差,主要有两个方面的影响:

  • 磁盘 I/O 次数高:对于“双1”配置,每个事务提交都会进行两次 fsync(刷盘),一次是 redo log 刷盘,另一次是 binlog 刷盘。
  • 锁竞争激烈:两阶段提交虽然能够保证「单事务」两个日志的内容一致,但在「多事务」的情况下,却不能保证两者的提交顺序一致,因此,在两阶段提交的流程基础上,还需要加一个锁来保证提交的原子性,从而保证多事务的情况下,两个日志的提交顺序一致。

MySQL 引入了 binlog 组提交(group commit)机制,当有多个事务提交的时候,会将多个 binlog 刷盘操作合并成一个,从而减少磁盘 I/O 的次数,如果说 10 个事务依次排队刷盘的时间成本是 10,那么将这 10 个事务一次性一起刷盘的时间成本则近似于 1。

10. buffer pool相关

Buffer Pool 以页为单位缓冲数据,可以通过 innodb_buffer_pool_size 参数调整缓冲池的大小,默认是 128 M。

Innodb 通过三种链表来管理缓页:

  • Free List (空闲页链表),管理空闲页;
  • Flush List (脏页链表),管理脏页;
  • LRU List,管理脏页+干净页,将最近且经常查询的数据缓存在其中,而不常查询的数据就淘汰出去。;

InnoDB 对 LRU 做了一些优化,我们熟悉的 LRU 算法通常是将最近查询的数据放到 LRU 链表的头部,而 InnoDB 做 2 点优化:

  • 将 LRU 链表 分为young 和 old 两个区域,加入缓冲池的页,优先插入 old 区域;页被访问时,才进入 young 区域,目的是为了解决预读失效的问题。
  • 「页被访问」且「 old 区域停留时间超过 innodb_old_blocks_time 阈值(默认为1秒)」时,才会将页插入到 young 区域,否则还是插入到 old 区域,目的是为了解决批量数据访问,大量热数据淘汰的问题。
  • 另外,MySQL 针对 young 区域其实做了一个优化,为了防止 young 区域节点频繁移动到头部。young 区域前面 1/4 被访问不会移动到链表头部,只有后面的 3/4被访问了才会。

可以通过调整 innodb_old_blocks_pct 参数,设置 young 区域和 old 区域比例。

在开启了慢 SQL 监控后,如果你发现「偶尔」会出现一些用时稍长的 SQL,这可因为脏页在刷新到磁盘时导致数据库性能抖动。如果在很短的时间出现这种现象,就需要调大 Buffer Pool 空间或 redo log 日志的大小。

InnoDB 的更新操作采用的是 Write Ahead Log 策略,即先写日志,再写入磁盘,通过 redo log 日志让 MySQL 拥有了崩溃恢复能力。

下面几种情况会触发脏页的刷新:

  • 当 redo log 日志满了的情况下,会主动触发脏页刷新到磁盘;
  • Buffer Pool 空间不足时,需要将一部分数据页淘汰掉,如果淘汰的是脏页,需要先将脏页同步到磁盘;
  • MySQL 认为空闲时,后台线程会定期将适量的脏页刷入到磁盘;
  • MySQL 正常关闭之前,会把所有的脏页刷入到磁盘;

11.mysql的两种引擎的区别有哪些?

  • InnoDB 支持行级别的锁粒度,MyISAM 不支持,只支持表级别的锁粒度。
  • MyISAM 不提供事务支持。InnoDB 提供事务支持,实现了 SQL 标准定义了四个隔离级别。
  • MyISAM 不支持外键,而 InnoDB 支持。
  • MyISAM 不支持 MVCC,而 InnoDB 支持。
  • 虽然 MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是两者的实现方式不太一样。
  • MyISAM 不支持数据库异常崩溃后的安全恢复,而 InnoDB 支持。InnoDB 的性能比 MyISAM 更强大。
    l

标签:八股,log,记录,数据,事务,索引,Mysql,redo
From: https://www.cnblogs.com/flameHkngiht/p/18097800

相关文章

  • MySQL数据库索引失效的常见情况
    MySQL数据库索引失效的常见情况01索引失效负面后果在MySQL数据库中,当索引失效时,可能会导致以下后果:全表扫描:如果索引失效,MySQL可能会选择执行全表扫描来检索数据,这将导致性能下降,特别是对于大型数据表而言。低效的查询计划:索引失效可能导致MySQL优化器选择不合适......
  • MySQL多实例配置
    目录一、什么是多实例二、MySQL多实例配置1、创建数据目录2、创建配置文件3、编辑330{7..9}的配置文件4、初始化330{7..9}数据5、修改目录权限6、启动多实例7、查看server_id8、进入单独的MySQL实例9、关闭实例一、什么是多实例Mysql多实例就是在一台服务器上同时开启多个不同......
  • MySQL大总结(1)
    1.关系型数据库的特点     1、使用表来存储数据,格式统一,便于维护。2、使用SQL语句操作数据库,标准统一,使用方便。3、数据存储在磁盘中,相对安全。2.DBMS、数据库和表的关系?简言之,先有DBMS,之后有数据库,再有表,每个表中再有数据,具体如下图所示。3.以下关于连接My......
  • MySQL小练习(1)
    --(1)查询全体学生的学号与姓名selectsno,snamefromstudent;--(2)查询全体学生的姓名、学号和所在系selectsname,sno,deptfromstudent;--(3)查询全体学生的详细记录select*fromstudent;--(4)查询全体学生的姓名及其出生年份selectsname,2024-sageas出生......
  • mysql学习笔记-单表学习
    分类全称说明DDLDataDefinitionLanguage数据定义语言,用来定义数据库对象(数据库,表,字段)DMLDataManipulationLanguage数据操作语言,用来对数据库表中的数据进行增删改DQLDataQueryLanguage数据查询语言,用来查询数据库中表的记录DCLDataControl......
  • java毕业设计商城平台(Springboot+mysql+jdk1.8+maven3.39)
    本系统(程序+源码)带文档lw万字以上 文末可领取本课题的JAVA源码参考系统程序文件列表系统的选题背景和意义选题背景:随着互联网技术的迅猛发展和电子商务的蓬勃兴起,商城平台已经成为人们日常生活中不可或缺的一部分。从服装、电子产品到食品、日用品等,几乎任何想得到的商......
  • java毕业设计体检中心信息管理系统(Springboot+mysql+jdk1.8+maven3.39)
    本系统(程序+源码)带文档lw万字以上 文末可领取本课题的JAVA源码参考系统程序文件列表系统的选题背景和意义选题背景:随着人们健康意识的增强和医疗保健水平的提高,体检成为现代生活中不可或缺的一部分。体检中心作为提供专业健康检查服务的机构,其信息管理效率和服务质量直......
  • java毕业设计商洛市尾矿资源管理系统(Springboot+mysql+jdk1.8+maven3.39)
    本系统(程序+源码)带文档lw万字以上 文末可领取本课题的JAVA源码参考系统程序文件列表系统的选题背景和意义选题背景:商洛市位于中国陕西省东南部,该地区矿产资源丰富,历史上矿业开采活动频繁。然而,随着矿产资源的不断开发利用,产生了大量的尾矿。尾矿如果处理不当,不仅会造成......
  • java毕业设计企业知识产权管理系统(Springboot+mysql+jdk1.8+maven3.39)
    本系统(程序+源码)带文档lw万字以上 文末可领取本课题的JAVA源码参考系统程序文件列表系统的选题背景和意义选题背景:在知识经济时代,知识产权已成为企业核心竞争力的重要标志。企业为了保护自主创新成果、维护商业利益和市场竞争力,需要对专利、商标、版权等知识产权进行有......
  • java毕业设计文体用品商城的设计与实现(Springboot+mysql+jdk1.8+maven3.39)
    本系统(程序+源码)带文档lw万字以上 文末可领取本课题的JAVA源码参考系统程序文件列表系统的选题背景和意义选题背景:随着互联网技术的飞速发展,电子商务已经成为人们日常生活的一部分。文体用品作为日常生活中的重要组成部分,其销售模式也正在由传统的线下门店向线上电商平......