首页 > 数据库 >Redis“垃圾”过期死键管理与优化

Redis“垃圾”过期死键管理与优化

时间:2023-12-21 19:07:14浏览次数:41  
标签:删除 过期 Redis 键值 key dict 死键

【作者】付磊

Redis死键的定义不尽相同,通常有两种:

  • 写到Redis里后,由于过期时间过长或者压根没有过期时间,加之长期不访问,这类key可以被称为死键。
  • 明明已经过了过期时间,但还占用Redis内存(没有真的删除),这类key也可以被称为死键。

注:本文讨论第二种情况

一、两个例子

下面两个列子中的键值均有过期时间,同时有些键值已过期

1. 对某Redis集群进行全量scan后,键值数和容量的变化:


键值数

容量GB

扫描前

5,628,636,513

1116

扫描后

4,206,662,303

798

2. 两个同名不同版本的Redis集群的键值数和容量(全部为string类型)

版本

键值数

容量GB

Redis 4.0.14

821,131,528

831

Redis 6.0.15

821,131,528

433

初步结论:

  • scan操作可能会加速Redis的过期键值删除。
  • Redis 6版本比Redis 4在同等数据下更节省空间,考虑到Redis成本优化-版本升级-1.SDS优化历史一文中提到4.0~7.0字符串类型在容量上并没有过多优化,因此初步判定Redis 6可能在过期上做过优化

二、基础知识-Redis过期

1. Redis过期数据怎么存?

每个Redis有多个redisDb(但正常只用db0),每个redisDb包含两个dict:dict存key-value、expires存key的过期时间

typedef struct redisDb {
    dict *dict;                 /* The keyspace for this DB */
    dict *expires;              /* Timeout of keys with a timeout set */
    ...
} redisDb;

具体如图所示

(1) 正常的dict图:(该图来自《Redis设计与实现》)

(2) 抽象的表现dict和expires表可以使用如下图:(来源于google图片)

Redis“垃圾”过期死键管理与优化_Redis

再次借个图:expires中key stringobject和dict中的 key stringobject是同一个:

Redis“垃圾”过期死键管理与优化_键值_02

2. Redis过期策略

由于Redis单线程(work thread)的特性,如果精准实时删除每个过期键值,会耗费大量CPU。所以Redis折中实现两种过期删除策略:惰性删除和定期删除。

(1) 惰性删除

客户端执行key相关命令时(以get为例子),首先会去检测key是否在expires表里:

  • 如果在expires表里
  • 如果已经过期:直接删除,并返回空
  • 如果没有过期:从dict表里获取value
  • 如果不在expires表里,从dict表里获取value
(2) 定期删除

惰性删除的问题是依赖于主动访问,如果一直不访问,数据将长期保存,造成内存浪费,于是需要添加新的策略:定期删除。

Redis会每100毫秒(如果hz默认是10),会对expires表中已过期数据进行自适应算法删除(具体方法下面会详细介绍)。

三、Redis版本优化

为了更生动的表现Redis 6在死键上的升级,可以做如下实验:写入500万条string,key和value都是16字节,过期时间在1-18秒

版本

全部数据过期耗时

Redis 4.0.14

38262ms

Redis 6.0.15

19267ms

1. Redis 6.0之前:

Redis定期删除过期有两种模式:快模式和慢模式(默认)

注意:
1. 快模式:希望每次定期删除快速结束,防止占用Redis处理正常命令的CPU。
2. 快模式和慢模式在执行过程中自适应的进行转换,本质都是防止占用Redis处理正常命令的CPU。
3. 快模式和慢模式:只是超时时间不同,删除逻辑是一样的

Redis“垃圾”过期死键管理与优化_键值_03

默认进入慢模式:

(1) 循环遍历全部redisDb,随机抽取20个键值,如果发现过期就直接删除。

(2) 判断20个键值中的25%(也就是5个)是否过期

  • 如果小于等于25%,则退出当前redisDb的循环,继续下一个redisDb
  • 如果大于25%,继续抽取20个键值进行循环,每次判断总的执行时间是否超过25毫秒
  • 超过25毫秒,过期进入快模式(超时时间会变短)
  • 没超过25毫秒,则退出当前redisDb的循环,继续下一个redisDb

几个重要参数:

#define ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP 20 /* 上述的20个键值 */
#define ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC 25 /* 慢模式超时时间:25%的CPU时间 */
#define ACTIVE_EXPIRE_CYCLE_FAST_DURATION 1000 /* 快模式超时时间:1ms */

2. Redis 6.0优化

(1) 每次随机-->记录遍历游标

Redis 6.0之前每次执行定期删除都是随机抽取20个键值,如果当前Redis有过期时间的键值数量较多(例如几百万、几千万),那么这个随机会导致很多key不会被扫描到,因此在Redis 6.0中在redisDb加了一个游标(expires_cursor),记录上一次扫描的位置,可以保证最终全部的键值会被扫描到,有效的提升效率。

typedef struct redisDb {
    dict *dict;                 /* The keyspace for this DB */
    dict *expires;              /* Timeout of keys with a timeout set */
    unsigned long expires_cursor; /* Cursor of the active expire cycle. */
   .......
} redisDb;
(2) 判断20个键值中的25%(也就是5个)-->10%(也就是2个)

Before 6.0:

do {
   num = ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP
   while (num--) {
        //检测每个key的过期时间,并做相关记录,如果已经过期expired++
    }
} while (expired > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP/4);

After 6.0,config_cycle_acceptable_stale可调配

do {
   num = ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP
   while (num--) {
        //检测每个key的过期时间,并做相关记录,如果已经过期expired++
    }
}
} while ((expired*100/sampled) > config_cycle_acceptable_stale);
(3) 添加增强系数

新增active_expire_effort配置,可以适当增强定期删除粒度,它的值范围在1-10。

unsigned long effort = server.active_expire_effort-1, /* Rescale from 0 to 9. */
//增加每次扫描key的个数
config_keys_per_loop = ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP +  ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP/4*effort,
//增加快模式的超时时间
config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION +  ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort,
//增加慢模式的超时时间
config_cycle_slow_time_perc = ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC + 2*effort,
//上述while中的比率
config_cycle_acceptable_stale = ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE- effort;

四、为什么会有死键、危害是什么

1. 为什么会有死键

(1) 惰性删除:如果很多key不会被二次访问,就会产生死键
(2) 定期删除:如果过期键值生产速度大于定期删除速度

针对(2)有两种情况:

第一种:当前Redis有大量写入同时键值过期时间都很短。

第二种:当前Redis包含大量键值(例如百万级别),但已经过期的数据只占很小的比率,这种相对诡异。

我们还是举个例子:线上某集群


键值数Million

容量GB

扫描前

991.18

396.37

扫描后

814.58

296.90

我们可以分析它的键值空间:短过期时间只占很少的比率,它无法自行完成死键的快速过期。

Redis“垃圾”过期死键管理与优化_键值_04

我们回到之前分析的流程图就很容易得出答案:每次遍历redisdb有个核心条件是是否超过25%的键值过期了,从上面的键值分析图可以判断,每次扫描大部分可能就循环一次。

Redis“垃圾”过期死键管理与优化_键值_05

2.死键的危害

危害本质:例如当前集群100GB, 键值如果没有死键只有50G,如果有死键可能就是90GB。

(1) 增加运维次数:业务侧可能会频繁提交扩容。

(2) 浪费成本:

(3) 可能产生逐出:不可预期的使用容量,可能会造成数据逐出(大部分逐出算法都是近似算法,例如lru)

五、如何解决

关于这个比较有意思的是看到官方给出的一个方法是重启,这个对线上环境不太现实(即使有failover)。我们在生产中可以使用如下方法:

1.适度调整active_expire_effort参数(针对Redis 6.0+)

怎么叫适度呢?我们要理解本质上Redis是要对外提供服务的,所以我们必须保证有足够多的CPU时间给正常的命令访问,Redis 4.0之后有个核心指标stat_expired_time_cap_reached_count可以作为参考,其实它就是记录了超时次数,代表在过期删除上投入过多CPU时间。

/* We can't block forever here even if there are many keys to
 * expire. So after a given amount of milliseconds return to the
 * caller waiting for the other active expire cycle. */
if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */
    elapsed = ustime()-start;
    if (elapsed > timelimit) {
        timelimit_exit = 1;
        server.stat_expired_time_cap_reached_count++;
        break;
    }
}

可以对齐进行监控。

2.定期scan

当识别到某些集群有如下特点,可以借助外力scan(其实就是惰性删除)帮助过期键值数据删除,但是也要力度适度,例如要结合当前Redis的CPU繁忙程度进行sleep时间设定。

Redis“垃圾”过期死键管理与优化_Redis_06

3. hz:

这个建议不要乱调整。。hz影响的地方不止这个,所以不要乱调(网上各种文章让调整这个,一定要慎重)

六、如何识别?

说句实话这个问题比较复杂,我也琢磨了挺长时间,可以大概归结成6点(欢迎大佬来喷)

1.expires表要“大”:

需要有一定规模(不然死键问题不存在),一般认为超过100万(但这个不绝对,比如第2中情况)

2.批量生成大量短过期时间的键值:

avg_ttl的例子如下:

Redis“垃圾”过期死键管理与优化_键值_07

键值分析的效果如下:

Redis“垃圾”过期死键管理与优化_redis_08

3.avg_ttl不可靠

avg_ttl是一个近似值,同时它会受到非常长过期时间的干扰(俗称“被平均”),上述中例子就是个典型,avg_ttl是15day,但是确实包含了大量死键

Redis“垃圾”过期死键管理与优化_键值_09

Redis“垃圾”过期死键管理与优化_Redis_10

4.利用stat_expired_time_cap_reached_count定位

stat_expired_time_cap_reached_count比较频繁说明过期键值很多,因为已经超时了,可以把全部实例绘图监控或者告警

5.键值分析结合stat_expired_stale_perc指标

stat_expired_stale_perc是total_expired/total_sampled的近似比率,如果偏高说明过期键值很多,如果偏低,需要结合键值分析看是否受到了整体的干扰。

double current_perc;
if (total_sampled) {
    current_perc = (double)total_expired/total_sampled;
} else
    current_perc = 0;
server.stat_expired_stale_perc = (current_perc*0.05)+
                                 (server.stat_expired_stale_perc*0.95);
6. 终极绝招:scan后给集群打标签

低峰期对每个可疑集群进行清理scan,记录前后键值容量变化,对集群进行标签后,开启定期scan

Redis“垃圾”过期死键管理与优化_Redis_11

请控制好redis实例的键值个数

参考Redis开发规范解析(三)--一个Redis最好存多少key

七、最后一个小实验

如何证明expires中的key和dict中的key是同一个。

Redis“垃圾”过期死键管理与优化_键值_12

实验:在Redis 6.0.15插入两组数据

key数量

键值

过期时间

used_memory_human

500万

string类型,key和value都是16字节

不过期

598.158MB

500万

string类型,key和value都是16字节

过期时间1天

776.599MB




多出:178.44MB

现在对第二组数据执行debug htstats

127.0.0.1:12615> debug HTSTATS 0
[Dictionary HT]
Hash table 0 stats (main hash table):
 table size: 8388608
 number of elements: 5000000
 different slots: 3766504
 max chain length: 10
 avg chain length (counted): 1.33
 avg chain length (computed): 1.33
 Chain length distribution:
   0: 4622104 (55.10%)
   1: 2755189 (32.84%)
   2: 820438 (9.78%)
   3: 163161 (1.95%)
   4: 24475 (0.29%)
   5: 2930 (0.03%)
   6: 278 (0.00%)
   7: 32 (0.00%)
   10: 1 (0.00%)
[Expires HT]
Hash table 0 stats (main hash table):
 table size: 8388608
 number of elements: 5000000
 different slots: 3766504
 max chain length: 10
 avg chain length (counted): 1.33
 avg chain length (computed): 1.33
 Chain length distribution:
   0: 4622104 (55.10%)
   1: 2755189 (32.84%)
   2: 820438 (9.78%)
   3: 163161 (1.95%)
   4: 24475 (0.29%)
   5: 2930 (0.03%)
   6: 278 (0.00%)
   7: 32 (0.00%)
   10: 1 (0.00%)

下面分别计算:

(1) table size: 8388608,每个需要8个字节指针  = 8388608 * 8 / 1024 / 1024 = 64MB

(2) number of elements: 5000000,刨除dictEntry中的key(这里假设是共享的),value = 16字节(一个int编码的redisobj,为什么是16字节(redis 6),请参考Redis成本优化-版本升级-1.SDS优化历史加上一个8字节next指针,最终折合=5000000 * (16 + 8 ) /1024/1024=114.44MB

最终我们可以验证expires中的key和dict中的key是共享的。

八、几个思考

1.为什么Redis的过期不能立即删除

2.为什么不能用过期事件功能:用事件通知删除。

标签:删除,过期,Redis,键值,key,dict,死键
From: https://blog.51cto.com/u_15576159/8925864

相关文章

  • 分布式缓存NewLife.Redis
    NewLife.Redis 是一个Redis客户端组件,以高性能处理大数据实时计算为目标。Redis协议基础实现位于Redis/RedisClient,FullRedis为扩展实现,主要增加列表结构、哈希结构、队列等高级功能。源码: https://github.com/NewLifeX/NewLife.RedisNuget:NewLife.Redis/NewLife.Extens......
  • docker初步入门学习安装redis和mysql
    dockerrun--namemyredis-p6379:6379-dredisredis-server--appendonlyyesdockerrun--namemysql-eMYSQL_ROOT_PASSWORD=123456-d-p3306:3306mysql:5.7.27dockerpullmysql:5.7.27dockerrun-d--hostnamemy-rabbit--namemyra......
  • 《Java架构师的第一性原理》32分布式计算之分布式缓存第1篇如何使用Redis搭建玩家排行
    今天我们用Redis搭建一个玩家的排行榜,假设一个服务器存储了10万名玩家的数据,我们想给这个区(这台服务器)上的玩家做个全区的排名,该如何用Redis实现呢?不妨一起来思考下面几个问题:MySQL是如何实现玩家排行榜的?有哪些难题需要解决?如何用Redis模拟10万名玩家数据?Redis里......
  • 《Java架构师的第一性原理》32分布式计算之分布式锁(Redis、Zookeeper)
    1 这才是真正的分布式锁技术领域,我觉得了解来龙去脉,了解本质原理,比用什么工具实现更重要:(1)进程多线程如何互斥?(2)一个手机上两个APP访问一个文件如何互斥?(3)分布式环境下多个服务访问一个资源如何互斥?归根结底,是利用一个互斥才能访问的公共资源来实现分布式锁,具体这个公共资源是r......
  • linux 安装 redis
    一、通用方式要在Linux上安装Redis,可以按照以下步骤进行操作:1.打开终端,使用以下命令下载Redis的压缩包: wgethttp://download.redis.io/releases/redis-x.x.x.tar.gz注意将"x.x.x"替换为你想要下载的Redis版本号。2.解压下载的压缩包:tarxzfredis-x.x.x.tar.gz进入......
  • Linux服务器快速安装Redis-6.0
    最近开始体验FastGPT开源知识库问答系统,用他们试着开发调试一些小助手。这中间需要使用到Redis,就在自己服务器上进行了安装,特此记录下。环境说明:阿里云ECS,2核8G,X86架构,CentOS7.9操作系统。选择版本1.打开Redis官网下载页面,可以选择需要的版本下载。我这里选择的是6.2.14版本......
  • 转 Windows下Redis安装及自启动
    Redis下载Redis官方网站没有提供Windows版的安装包,可以通过GitHub来下载Windows版Redis安装包,下载地址:点击前往。打开上述的下载地址链接,Redis支持32位和64位的Window系统,根据个人情况自行下载,如图1所示:    下载完成后,打开相应的文件夹,可以看到如下文......
  • redis锁定商品解决并发售卖问题 RedisUtil工具类
    redis锁定商品解决并发售卖问题 RedisUtil工具类redis数据类型介绍: //伪代码,基本思路//1.出redis,每次在选定商品之后,先检查redis是否已经锁定该商品,避免超卖。Set<String>cacheList=redisUtilService.getSetValue(redisMapKey);if(CollectionUtils.isNotEmpty(cacheList......
  • redis分布锁
    1.什么是redis分布式锁Redis分布式锁是一种利用Redis实现的锁机制,用于在分布式系统中保护共享资源的访问。它利用Redis的原子性操作和过期时间设置来实现互斥访问。在分布式环境中,多个进程或线程可能同时访问共享资源,如果没有合适的机制来保护共享资源,就会导致数据不一致或竞争......
  • Redis7 BigKey
    1、MoreKey1.1、大数据模拟往redis插入大量数据进行测试for((i=1;i<=100*10000;i++));doecho"setk$iv$i">>/tmp/redisTest.txt;done;通过redis提供的管道--pipe命令插入100W大批量数据cat/tmp/redisTest.txt|/opt/redis-7.0.0/src/redis-cli-h127.0.0.1-p6379-a......