首页 > 数据库 >MySQL-进阶篇 ( 存储引擎 + 索引一:结构 + 分类 + 语法 + SQL 性能分析 )

MySQL-进阶篇 ( 存储引擎 + 索引一:结构 + 分类 + 语法 + SQL 性能分析 )

时间:2023-08-17 19:44:14浏览次数:37  
标签:存储 索引 -- SQL 查询 进阶篇 引擎 MySQL

MySQL-进阶篇 ( 存储引擎 + 索引一 )

目录

存储引擎

MySQL 体系结构

image-20230723223248261

  • 索引 index 是在存储引擎层实现的,不同的引擎索引的结构不同
    • 其中 InnoDB 是 MySQL 5.5 之后默认的存储引擎

image-20230723223321100

存储引擎简介

  • 存储引擎就是存储数据、建立索引、更新 / 查询数据等技术的实现方式。存储引擎是基于表的,而不是基于库的,所以存储引擎也可被称为表类型

  • 查看数据表设置的引擎

    • show create table account; 查看建表语句时会发现默认为 InnoDB
    • 右键目录里的表,选择 Go to DDL 查看
  • 在创建表时,指定存储引擎

    • -- 建表时指定存储引擎
      CREATE TABLE 表名(
         ...
      ) ENGINE = INNODB[COMMENT 表注释];
      
  • 查看当前数据库支持的存储引擎

    • show engines;

存储引擎特点

InnoDB

  • 介绍

    • InnoDB 是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB 是默认的 MySQL 存储引擎
  • 特点

    • DML 操作遵循 ACID 模型,支持事务
    • 行级锁,提高并发访问性能
    • 支持外键 FOREIGN KEY 约束,保证数据的完整性和正确性
  • 文件

    • xxx.ibd:xxx 代表的是表名,innoDB 引擎的每张表都会对应这样一个表空间文件,存储该表的表结构 ( frm、sdi )、数据和索引
      • 在下载的 MySQL 目录下的 Data 下选择库名,打开就会找到 .ibd 文件
      • 想要打开看,可以选择库目录下 cmd 输入 ibd2sdi xxx.ibd
    • 参数:innodb_file_per_table
      • 决定了是多张表公用一个表空间文件,还是一张表一个表空间文件
      • 默认是打开,即每一张表都对应一个表空间文件
    • 查看开关:show variable like 'innodb_file_per_table';
      • ON 就是打开的
  • 逻辑存储结构

    image-20230724181050022

    • TableSpace:表空间
    • Segment:段
    • Extent:区,是固定大小的,为 1M
      • 一个区可包含 64 个页
    • Page:页,是磁盘操作的最小单元,固定大小为 16K
    • Row:行
      • Trx id:最后一次操作事务的 id
      • Roll pointer:各指针
      • col:各字段

MyISAM

  • 介绍
    • MyISAM 是 MySQL 早期的默认存储引擎
  • 特点
    • 不支持事务,不支持外键
    • 支持表锁,不支持行锁
    • 访问速度快
  • 文件
    • xxx.sdi:存储表结构信息
      • 打开后复制访问 Json.cn 粘贴后就会转成常见的 sql 语句
    • xxx.MYD:存储数据
    • xxx.MYI:存储索引

Memory

  • 介绍
    • Memory 引擎的表数据是存储在内存中的,由于受到硬件问题或断点问题的影响,只能将这些表作为临时表或缓存使用
  • 特点
    • 内存存放
    • hash 索引 ( 默认 )
  • 文件
    • xxx.sdi:存储表结构信息

引擎特点区分

特点 InnoDB MyISAM Memory
存储限制 64TB
事务安全 支持 - -
锁机制 行锁 表锁 表锁
B+tree 索引 支持 支持 支持
Hash 索引 - - 支持
全文索引 支持 ( 5.6版本之后 ) 支持 -
空间使用 N / A
内存使用 中等
批量插入速度
支持外键 支持 - -
  • 相比 MyISAM,InnoDB 支持事务、支持行锁、支持外键

存储引擎选择

  • 在选择存储引擎时,应该根据应用系统的特点选择合适的存储引擎。对于复杂的应用系统,还可以根据实际情况选择多种存储引擎进行组合。

    • InnoDB:是 MySQL 的默认存储引擎,支持事务、外键。如果 —— 应用对事物的完整性有比较高的要求;在并发条件下要求数据的一致性;数据操作除了插入和查询之外,还包含很多的更新、删除操作。则 InnoDB 是比较合适的选择
    • MyISAM:如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不高,则此存储引擎是非常合适的。
      • 非核心数据,偶尔使用无碍
    • Memory:将所有数据保存在内存中,访问速度快,通常用于临时表及缓存。Memory 的缺陷是对表的大小有限制,太大的表无法缓存在内存中,而且无法保障数据的安全性
  • 但其实只常用 InnoDB 了,因为 MyISAM 被非关系型数据库 mongdb 替代了,Memory 被非关系型数据库的 redis 替代了

索引

索引概述

  • 介绍

    • 索引 ( index ) 是帮助 MySQL 高效获取数据的数据结构 ( 有序 )。
      • 在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用 ( 指向 ) 数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
  • 演示引出

    • 无索引的话,想要查找某条数据,要遍历、一条条扫描
    • 有索引的话,例如使用维护了的二叉树结构,就可以在查找数据时更有效率
  • 优点:

    • 提高数据检索效率,降低数据库的 IO 成本
    • 通过索引列对数据进行排序,降低数据排序的成本,降低 CPU 的消耗
  • 缺点:

    • 索引列也是要占用磁盘空间的
      • 但磁盘相较不贵
    • 索引大大提高了查询效率,但降低了更新的速度,比如 INSERT、UPDATE、DELETE ( 就需要同时更新到节点中 ),效率降低
      • 查询占比例远大于增删改

索引结构

  • MySQL 的索引是在存储引擎层实现的,不同的存储引擎有不同的结构,主要包含以下几种:

    索引结构 描述
    B+Tree 索引 最常见的索引类型,大部分引擎都支持 B+ 树索引
    Hash 索引 底层数据结构是用哈希表实现,只有精确匹配索引列的查询才有效,不支持范围查询
    R-Tree ( 空间索引 ) 空间索引是 MyISAM 引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少
    Full-Text ( 全文索引 ) 是一种通过建立倒排索引,快速匹配文档的方式,类似于 Lucene,Solr,ES ( 使用少 )
    • 引擎对索引的支持

      索引 InnoDB MyISAM Memory
      B+Tree 支持 支持 支持
      Hash 不支持 不支持 支持
      R-Tree 不支持 支持 不支持
      Full-text 5.6 版本之后支持 支持 不支持
  • 我们平常所说的索引,如果没有特别指明,都是指 B+ 树结构组织的索引

二叉树

  • 平常的二叉树有一个缺陷:顺序插入时,会形成一个链表,查询性能大大降低。在大数据情况下,层级较深,检索速度慢
  • 红黑树可以来解决上一个的顺序插入的平衡问题,但:本质还是二叉树,大数据量情况下,层级较深,检索速度慢 ( 二叉树都会存在的问题 )

B-Tree ( B 树,多路平衡查找树 )

  • 以一颗最大度数 ( max-degree ) 为 5 ( 5 阶 ) 的 b-tree 为例 ( 每个节点最多存储 4 个 key,5 个指针 )

    • n 个 key,指针则是 n + 1 个 ( 每个分开的区域都有一个指针 )

      image-20230726173509702

    • 树的度数指的是一个节点的子节点个数

  • 5 阶为例,如若插入数据:23,234,345,860 后已形成 4 key、5 指针,再插入 1200 就会超出,所以开始计算这五个数的中间值,得将 345 上提为根,左下和右下各两个,若是下面又超出 4 个 key,所以再将中间值向上分裂与 345 同为根,直到根也要超出时,再于其中选出中间元素向上分裂为新的根

  • 数据结构可视化网站

  • B 树可视化部分

B+Tree ( B加树 )

  • 实际为 B 树的变种

  • 以一颗最大度数 ( max-degree ) 为 4 ( 4 阶 ) 的 b+tree 为例:

    • 最多 3 个 key,4 个指针

      image-20230726214940631

    • 上面非叶子节点主要起索引的作用,下面的叶子节点用来存放数据,于是下面的叶部分就形成了一个单向链表

  • 若是同上5 阶为例,如若插入数据:23,234,345,860 后再插入 600,就会只把中间的 345 复制一个向上为根,下面的就是单向链表 “ 23 234 ——> 345 600 860 ” 这样所有的数据就都会在叶子节点处了,若是插入 1000 后,再插入 1234,则就会把中间的 860 上提到 345 的后面,下面的叶子就变成了 “ 23 234 ——> 345 600 ——> 860 1000 1234 ”

  • MySQL 索引数据结构对经典的 B+Tree 进行了优化。在原 B+Tree 的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的 B+Tree,提高了区间访问的性能 ( 即单链变双向的循环链表 )

    image-20230726214858394

Hash

  • 哈希索引就是采用一定的 hash 算法,将键值换算成新的 hash 值,映射到对应的槽位上,存储在 hash 表中
  • 如果两个 ( 或多个 ) 键值映射到一个相同的槽位上,他们就产生了 hash 冲突 ( 也称为 hash 碰撞 ),可以通过链表来解决
  • 特点:
    • Hash 索引只能用于对等比较 ( =, in ),不支持范围查询 ( between, >, <, ... )
    • 无法利用索引完成排序操作
    • 查询效率高,通常只需要一次检索就可以了 ( 即不出现 hash 碰撞的话 ),效率通常要高于 B+Tree 索引
  • 存储引擎支持
    • 在 MySQL 中,支持 hash 索引的是 Memory 引擎,而 InnoDB 中具有自适应 hash 功能,hash 索引是存储引擎根据 B+Tree 索引在指定条件下自动构建的

面试思考题

为什么 InnoDB 存储引擎选择使用 B+Tree 索引结构?

  • 相对于二叉树,层级更少,搜索效率高
  • B-Tree 中无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针也跟着减少,要同样保存大量数据,只能增加树的高度,增加层级,导致性能降低
    • B+Tree 非叶子节点不存储数据,所以可以存放更多的 key、指针,所以相较而言层级更少
    • 而且查数据都要到叶子节点才能找到,效率稳定
    • 双向循环链表,便于范围查找与排序
  • 相对 Hash 索引,B+Tree 支持范围匹配及排序操作

索引分类

分类 含义 特点 关键字
主键索引 针对于表中主键创建的索引 默认自动创建,只能有一个 PRIMARY
唯一索引 避免同一个表中某数据列中的值重复 可以有多个 UNIQUE
常规索引 快速定位特定数据 可以有多个
全文索引 全文索引查找的是文本中的关键词,而不是比较索引中的值 可以有多个 FULLTEXT

在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类 含义 特点
聚集索引 ( Clustered Index ) 将数据存储与索引放一块,索引结构的叶子节点保存了行数据 必须有,而且只有一个
二级索引 ( Secondary Index ) 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 可以存在多个
  • 也有将二级索引称为辅助索引、非聚集索引

  • 聚集索引选取规则

    • 如果存在主键,主键索引就是聚集索引
    • 如果不存在主键,将使用第一个唯一 ( UNIQUE ) 索引作为聚集索引
    • 如果表没有主键或没有合适的唯一索引,则 InnoDB 会自动生成一个 rowid 作为隐藏的聚集索引
  • 例:

    image-20230727154217019

    • 如上图示,第一个聚集索引下的叶子节点中的 row 便是每一行的数据,
    • 聚集索引只能有一个,第二个二级索引的叶子节点就不是存放一行的所有数据了 ( 否则会冗余 ),而是各 name 值对应的 id值

    image-20230727154653861

    • 在查找数据的时候就是上图所示
    • 回表查询:在二级索引中拿到主键值,然后回到聚集索引中,根据主键查到所有的信息

练习提问

  • 以下 SQL 语句哪个执行效率更高?

    select * from user where id = 10;
    select * from user where name = 'Arm';
    -- 备注:id为主键,name字段创建的有索引
    
    • 第一条语句,因为就算 name 有索引,第二条还是需要回表查询
  • InnoDB 主键索引的 B+Tree 高度为多少?

    • 一页大小固定 16K,假设:一行数据大小为 1k,一页就可以存储 16 行这样的数据。InnoDB 的指针固定占用 6 个字节的空间,key 占用主要取决于主键的类型,主键假设为 bigint,占用字节数为 8 ( int 的话就是 4,此处用较大的 bigint 举例 )

    • 可得公式:n * 8 + (n + 1) * 6 = 16 * 1024

      • 8 表示 bigint 占用的字节数,n 表示当前节点存储的 key 的数量,(n + 1) 表示指针数量 ( 比 key 多一个 ),一页 16K,1K 为 1024 个字节,算出 n 约为 1170。
    • 如果树的高度为2,那么他能存储的数据量大概为:1171 * 16 = 18736;如果树的高度为3,那么他能存储的数据量大概为:1171 * 1171 * 16 = 21939856

    • 所以两千多万条记录树的结构可能也只有 3 层,所以检索效率很高

      • 再多就涉及到运维相关的分库分表了

索引语法

  • 创建索引

    • CREATE [UNIQUE|FULLTEXT] INDEX index_name ON table_name (index_col_name, ...);
      • CREATE 后不加参数就是创建常规索引
  • 查看索引

    • SHOW INDEX FROM table_name;
  • 删除索引

    • DROP INDEX index_name ON table_name;
  • 练习:根据需求创建索引

    -- name字段为姓名字段,该字段的值可能会重复,为该字段创建索引(-- 只能常规)
    create index idx_user_name on tb_user(name); 
    
    -- phone手机号字段的值非空,且唯一,为该字段创建唯一索引
    create unique index idx_user_phone on tb_user(phone);
    
    -- 为profession, age, status创建联合索引
    create index idx_user_pro_age_stat on tb_user(profession, age, status);
    
    -- 为email建立合适的索引来提升查询效率(-- 常规即可)
    create index idx_user_email on tb_user(email);
    
    -- 创建完后可以 show index from 表名随时查看
    
    -- 删除索引
    drop index idx_user_email on tb_user;
    
    • 一般 idx 表示 index,下划线后紧跟表名和字段名

SQL 性能分析

SQL 执行频率

  • MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息 ( session 查看当前会话、global 查看全局的状态信息 ) 。通过如下指令,可以查看当前数据库的 INSERT、UPDATE、SELECT 的访问频次:
  • SHOW GLOBAL STATUS LIKE 'Com_______'
    • Com 后的一个下划线就代表一个字符,此处是七个
  • 执行完后就会显示出 Com_delete、Com_insert、Com_select、Com_update 等,以及各个 value 值 ( 访问频次 )

慢查询日志

  • 已知 select 占多数,所以需要优化,而要针对哪些 select 语句进行优化?此时就用到了慢查询日志

  • 慢查询日志记录了所有执行时间超过指定参数 ( long_query_time,单位:秒,默认 10 秒 ) 的所有 SQL 语句的日志。

    • 即默认情况下超过 10 秒就记录在慢查询日志中
  • 可使用语句 show variables like 'show_query_log'; 查看慢日志是否开启,value 值为 OFF 就表示未开启

  • MySQL 的慢查询日志默认没有开启,需要在 MySQL 的配置文件 ( /etc/my.cnf ) 中配置:

    -- linux 环境下(用到vi编辑器):
    vi /etc/my.cnf
    -- 开启MySQL慢日志查询开关
    show_query_log=1
    
    -- 设置慢日志的时间为两秒,SQL语句执行时间超过两秒,就会视为慢查询,记录慢查询日志
    long_query_time=2
    
    -- 编辑完后 esc,输入 :x,再回车就会保存并退出,此时需要重启mysql再查看
    systemct1 restart mysqld
    
    • 查看慢日志文件中记录的信息 /var/lib/mysql/localhost-show.log

profile 详请

  • 慢查询日志只会将超出规定时间的语句找出来,但如果语句执行工作简单但是用时很长,却又不超出规定时间,这样的慢查询就发现不了

  • show profiles 能够在做 SQL 优化时帮助我们了解时间都耗费到哪里去了,通过 have_profiling 参数,能够看到当前 MySQL 是否支持:SELECT @@have_profiling;

    • 显示 YES 就表示支持
  • 支持的话,再查看是否打开:SELECT @@profiling;

    • 显示 0 就表示没开启
  • 默认 profiling 是关闭的,可以通过 set 语句在 session / global 级别开启 profiling:SET profiling = 1;

  • 打开后就可以执行一系列的业务 SQL 的操作,然后通过如下指令查看指令的执行耗时:

    -- 查看每一条SQL的耗时基本情况
    show profiles;
    -- query_id为排序(便于后面几个步骤使用),Duration 即为耗时,Query里查看执行的语句
    
    -- 后面的kai'fa
    -- 查看指定query_id的SQL语句各个阶段的耗时情况
    show profile for query query_id; -- 此处的query_id便是show所示的数字
    
    -- 查看指定query_id的SQL语句CPU的使用情况
    show profile cpu for query query_id;
    

explain 执行计划

  • 之前的都是根据执行时间粗略的进行判定,并不能真正评判 SQL 语句的性能,所以还要此步 explain
  • EXPLAIN 或者 DESC 命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序
  • 语法:直接在 select 语句之前加上关键字 explain / desc,即 EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件;
    • 就可以获取 select 语句的执行计划
EXPLAIN 各字段含义:
  • id:select 查询的序列号,表示查询中执行 select 子句或者操作表的顺序

    • id 并不是自增长

    • id 若是相同,执行顺序从上到下

      • 即一条 select 语句涉及到多张表时,从上到下就是表的执行顺序
    • id 若是不同,值越大,越先执行

    • 练习:查询选修了 MySQL 课程 ( 子查询 )

      • explain select * from student s where s.id in (select studentid from student_course sc where sc.courseid = (select id from course c where c.name = 'MySQL'));

      • 上述语句可得

        id table
        1 < subquery2 >
        1 s
        2 sc
        3 c

        执行顺序 c ——> sc ——> < subquery2 就是 in 后面的第二个子查询 > ——> s

  • select_type:表示 SELECT 的类型,常见取值有 SIMPLE ( 简单表,即不适用表连接或者子查询 )、PRIMARY ( 主查询,即外层的查询 )、UNION ( UNION 中的第二个或者后面的查询语句 )、SUBQUERY ( SELECT / WHERE 之后包含了子查询 ) 等

  • type:表示连接类型,性能由好到差的连接类型为 NULL、system、const、eq_ref、ref、range、index、all

    • 查询的时候不访问任何表的话,就会出现 NULL,
      • 尽量往前优化即可,一般无法优化成 NULL
    • 相当于访问系统表时为 system
    • 根据主键和唯一索引时为 const
    • 非唯一性的索引时为 ref
  • possible_keys:可能应用在这张表上的索引,一个或多个

  • key:实际使用的索引,如果为 NULL,则没有使用索引

  • key_len:表示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下,长度越短越好

  • rows:MySQL 认为必须要执行的行数,在 InnoDB 引擎的表中,是一个估计值,可能并不总是准确的

  • filtered:表示返回结果的行数占需读取行数的百分比,filtered 的值越大越好

  • 重点关注的字段:type、possible_keys、key、key_len

标签:存储,索引,--,SQL,查询,进阶篇,引擎,MySQL
From: https://www.cnblogs.com/zhu-ya-zhu/p/17638688.html

相关文章

  • MySQL-基础篇 ( SQL-DML + DQL + DCL )
    MySQL-基础篇(SQL-DML+DQL+DCL)目录MySQL-基础篇(SQL-DML+DQL+DCL)SQLDML添加数据INSERT修改数据UPDATE删除数据DELETEDQL语句编写顺序基本查询条件查询(WHERE)聚合函数(count、max、min、avg、sum)分组函数(GROUPBY)排序查询(ORDERBY)分页查询(......
  • MySQL 8 下载安装过程
    MySQL8安装过程搜索MySQL官网——>点击DOWNLOADS——>MySQLCommunity(GPL)Downloads本文是下载社区版本,商业版本的话点击此页面的MySQLEnterpriseEdition(商业的是有技术支持收费的,本文介绍的是免费的社区版)点击MySQLCommunityServer选择......
  • 【技术积累】MySQL优化及进阶
    MySql优化及进阶一、MySQL体系结构连接层:是一些客户端和链接服务,包含本地sock通信和大多数基于客户端/服务端工具实现的类似于TCP/IP的通信服务层:大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化,部分内置函数的执行引擎层:负责了MySQL中数据的存储和提取,服......
  • 内网服务器离线编译安装mysql5
    目录一.前言二.关于MySQL三.MySQL安装篇3.1部署环境3.2前期准备工具3.3挂载系统ISO镜像,配置yum源3.4安装mysql编译所需的依赖包3.5源码编译安装mysql5.73.6配置mysql四.MySQL调优篇4.1对MySQL进行安全设置4.2设置MySQL超时时间4.3MySQL配置文件优化参......
  • 8种最坑的SQL语法
    SQL语句的执行顺序:LIMIT语句分页查询是最常用的场景之一,也是最容易出问题的地方。比如下面的简单的语句,一般DBA想要的办法是在type,name,create_time字段上加组合索引,这样条件排序都能有效的利用的索引,性能迅速提升。SELECT*FROMoperationWHEREtype='SQLStats'ANDname......
  • Linux centos7.6 在线及离线安装postgresql12 详细教程
    一、在线安装官网找到对应的版本PostgreSQL: https://www.postgresql.org/     1.配置yum源sudoyuminstall-yhttps://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm 2.在线安装PostgreSQLsudoyuminsta......
  • mysql
    几乎每张业务表都带有一个日期列,用于记录每条记录产生和变更的时间。比如用户表会有一个日期列记录用户注册的时间、用户最后登录的时间。又比如,电商行业中的订单表(核心业务表)会有一个订单产生的时间列,当支付时间超过订单产生的时间,这个订单可能会被系统自动取消。日期类型虽然常......
  • ctfshow-web入门-sql注入-SELECT模块
    title:ctfshow-web入门-sql注入-SELECT模块date:2023-08-1322:06:17categories:web刷题记录description:web171~web172基础知识缺乏的推荐看我的sqli-labs系列web171单引号包裹,思路很简单。先看多少列1'ORDERBY3--+确定三列查看回显1'UNIONSELECT1,2,3--+......
  • sqli-labs-BasicLevel-总结
    title:sqli-labsbasicchallengesdate:2023-08-0416:34:03categories:CTF-Web入门description:1~20总结常用的MySql命令总结查库:selectschema_namefrominformation_schema.schemata查表:selecttable_namefrominformation_schema.tableswheretable_schema='s......
  • SQL基础知识
     (一)DDL数据定义语言作用:用于检索或修改数据命令:SELECT:用于检索数据INSERT:用于添加数据到数据库UPDATE:用于修改数据库数据DELETE:用于删除数据库数据(二)DML数据操作语言作用:用于定义数据结构,比如:创建、修改或删除数据库对象,包括:用于创建用户和重建数据库对象命令:CR......