首页 > 数据库 >8种最坑的SQL语法

8种最坑的SQL语法

时间:2023-08-17 18:35:18浏览次数:36  
标签:my 语法 SQL Using NULL type id SELECT

SQL语句的执行顺序:

8种最坑的SQL语法_执行计划

LIMIT 语句 分页查询是最常用的场景之一,也是最容易出问题的地方。比如下面的简单的语句,一般DBA想要的办法是在type,name,create_time字段上加组合索引,这样条件排序都能有效的利用的索引,性能迅速提升。

SELECT * FROM operation WHERE type = 'SQLStats' AND name = 'SlowLog' ORDER BY create_time LIMIT 1000, 10; 好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢? 要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。 在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:

SELECT * FROM operation WHERE type = 'SQLStats' AND name = 'SlowLog' AND create_time > '2017-03-16 14:00:00' ORDER BY create_time limit 10; 在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

隐式转换 SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended SELECT * > FROM my_balance b > WHERE b.bpn = 14000000123 > AND b.isverified IS NULL ; mysql> show warnings; | Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn' 其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。 上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

关联更新、删除 虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。 比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o SET status = 'applying' WHERE o.id IN (SELECT id FROM (SELECT o.id, o.status FROM operation o WHERE o.group = 123 AND o.status NOT IN ( 'done' ) ORDER BY o.parent, o.id LIMIT 1) t); 执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary | | 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables | | 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort | +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ 重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o JOIN (SELECT o.id, o.status FROM operation o WHERE o.group = 123 AND o.status NOT IN ( 'done' ) ORDER BY o.parent, o.id LIMIT 1) t ON o.id = t.id SET status = 'applying' 执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const tables | | 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort | +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ 混合排序 MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id ORDER BY a.is_reply ASC, a.appraise_time DESC LIMIT 0, 20 执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra +----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort | | 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL | +----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+ 由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT * FROM ((SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 0 ORDER BY appraise_time DESC LIMIT 0, 20) UNION ALL (SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 1 ORDER BY appraise_time DESC LIMIT 0, 20)) t ORDER BY is_reply ASC, appraisetime DESC LIMIT 20; EXISTS语句 MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:

SELECT * FROM my_neighbor n LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx' WHERE n.topic_status < 4 AND EXISTS(SELECT 1 FROM message_info m WHERE n.id = m.neighbor_id AND m.inuser = 'xxx') AND n.topic_type <> 5 执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+ | 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where | | 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where | | 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where | +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+ 去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT * FROM my_neighbor n INNER JOIN message_info m ON n.id = m.neighbor_id AND m.inuser = 'xxx' LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx' WHERE n.topic_status < 4 AND n.topic_type <> 5 新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition | | 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where | | 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where | +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ 条件下推 外部查询条件不能够下推到复杂的视图或子查询的情况有: 1、聚合子查询; 2、含有 LIMIT 的子查询; 3、UNION 或 UNION ALL 子查询; 4、输出字段中的子查询; 如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT * FROM (SELECT target, Count(*) FROM operation GROUP BY target) t WHERE target = 'rm-xxxx' +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | 1 | PRIMARY | | ref | <auto_key0> | <auto_key0> | 514 | const | 2 | Using where | | 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index | +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ 确定从语义上查询条件可以直接下推后,重写如下:

SELECT target, Count(*) FROM operation WHERE target = 'rm-xxxx' GROUP BY target 执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ 关于 MySQL 外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表 mysql.taobao.org/monthly/201…

提前缩小范围 先上初始 SQL 语句:

SELECT * FROM my_order o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid WHERE ( o.display = 0 ) AND ( o.ostaus = 1 ) ORDER BY o.selltime DESC LIMIT 0, 15 该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL | | 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ 由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。

SELECT * FROM ( SELECT * FROM my_order o WHERE ( o.display = 0 ) AND ( o.ostaus = 1 ) ORDER BY o.selltime DESC LIMIT 0, 15 ) o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid ORDER BY o.selltime DESC limit 0, 15 再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | 1 | PRIMARY | | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort | | 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL | | 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) | | 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where | +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ 中间结果集下推 再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT a.*, c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN ( SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources GROUP BY resourcesid) c ON a.resourceid = c.resourcesid 那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。 其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT a.*, c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN ( SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources r, ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) a WHERE r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON a.resourceid = c.resourcesid 但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) SELECT a.*, c.allocated FROM a LEFT JOIN ( SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources r, a WHERE r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON a.resourceid = c.resourcesid 总结 数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。 上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。 程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。 编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。

标签:my,语法,SQL,Using,NULL,type,id,SELECT
From: https://blog.51cto.com/u_16229493/7126295

相关文章

  • Linux centos7.6 在线及离线安装postgresql12 详细教程
    一、在线安装官网找到对应的版本PostgreSQL: https://www.postgresql.org/     1.配置yum源sudoyuminstall-yhttps://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm 2.在线安装PostgreSQLsudoyuminsta......
  • mysql
    几乎每张业务表都带有一个日期列,用于记录每条记录产生和变更的时间。比如用户表会有一个日期列记录用户注册的时间、用户最后登录的时间。又比如,电商行业中的订单表(核心业务表)会有一个订单产生的时间列,当支付时间超过订单产生的时间,这个订单可能会被系统自动取消。日期类型虽然常......
  • ctfshow-web入门-sql注入-SELECT模块
    title:ctfshow-web入门-sql注入-SELECT模块date:2023-08-1322:06:17categories:web刷题记录description:web171~web172基础知识缺乏的推荐看我的sqli-labs系列web171单引号包裹,思路很简单。先看多少列1'ORDERBY3--+确定三列查看回显1'UNIONSELECT1,2,3--+......
  • sqli-labs-BasicLevel-总结
    title:sqli-labsbasicchallengesdate:2023-08-0416:34:03categories:CTF-Web入门description:1~20总结常用的MySql命令总结查库:selectschema_namefrominformation_schema.schemata查表:selecttable_namefrominformation_schema.tableswheretable_schema='s......
  • SQL基础知识
     (一)DDL数据定义语言作用:用于检索或修改数据命令:SELECT:用于检索数据INSERT:用于添加数据到数据库UPDATE:用于修改数据库数据DELETE:用于删除数据库数据(二)DML数据操作语言作用:用于定义数据结构,比如:创建、修改或删除数据库对象,包括:用于创建用户和重建数据库对象命令:CR......
  • mac m1 docker安装mysql
    1、拉取镜像dockerpullmysql/mysql-server2、启动服务dockerrun--namemysql-docker--restartalways--privileged=true\-p3306:3306\-eMYSQL_ROOT_PASSWORD="root"\-eTZ="Asia/Shanghai"\-d mysql/mysql-server说明:-d:后台运行容器-p:指定容器暴露......
  • 教你使用常用的逻辑公式和恒等式等价改写SQL
    今天同事给我一条2秒的SQL看看能不能优化。原始SQL:SELECTpk_deptFROMaaaaWHERE1=1AND((pk_group='0001A110000000000JQ6'ANDpk_orgIN('0001A110000000001M09')))AND(PK_DEPTIN(SELECTt1.ORGIDFROMxxxxxt1......
  • mysql数据库DeadLock处理分析
    1.问题复现数据库新建一个test表,里面包含id,和name字段然后分别开两个窗口,分别开启事务,然后updatename字段,不提交,然后查看一下三个表,看是否出现锁表情况innodb_trx        ##当前运行的所有事务innodb_locks     ##当前出现的锁innodb_lock_waits......
  • python3 安装clickhouse_sqlalchemy(greenlet) 失败
    环境信息:centos7操作系统,python3.8执行pip3installclickhouse_sqlalchemy或者pip3installgreenlet报以下报错:Command"/opt/python3.6.10-customized/bin/python3.6-u-c"importsetuptools,tokenize;file='/tmp/pip-install-wbyi43ip/greenlet/setup.py';f=g......
  • MYSQL与Hive配置的相关步骤
    1、配置元数据到MYSQL1、新建Hive元数据库登录Mysql:mysql-uroot-p//不加分号创建Hive元数据库:createdatabasemetastore;退出mysql:2、将mysql的jdbc驱动拷贝到hive的lib目录下3、在hive的conf目录下新建hive-site.xml文件vihive-site.xml进入到文件编写模......