lll = {'database': "test", 'user': 'postgres', 'password': 'postgis', 'host': '127.0.0.1', 'port': '5432'} engine = create_engine( f"postgresql+psycopg2://{lll['user']}:{lll['password']}@{lll['host']}:{lll['port']}/{lll['database']}") # print(engine) map_data = cq spatial_ref = int(map_data.crs.srs.split(':')[-1]) # 读取shp的空间参考 print(spatial_ref, type(spatial_ref)) map_data['geometry'] = map_data['geometry'].apply(lambda x: WKTElement(x.wkt, spatial_ref)) # geopandas 的to_sql()方法继承自pandas, 将GeoDataFrame中的数据写入数据库 print(map_data) map_data.to_sql( name='tbl_name1', con=engine, index=False, if_exists='replace', # 如果表存在,则替换原有表 chunksize=1000, # 设置一次入库大小,防止数据量太大卡顿 # 指定geometry的类型,这里直接指定geometry_type='GEOMETRY',防止MultiPolygon无法写入 dtype={'geometry': Geometry(geometry_type='GEOMETRY', srid=spatial_ref)}, method='multi' )
标签:shp,map,ref,geometry,geopandas,spatial,postgis,lll,data From: https://www.cnblogs.com/luochunxi/p/16627488.html