一、点云
我们在做 3D 视觉的时候,处理的主要是点云,点云就是一些点的集合。相对于图像,点云有其不可替代的优势——深度,也就是说三维点云直接提供了三维空间的数据,而图像则需要通过透视几何来反推三维数据。
而实际上点云是某个坐标系下的点的数据集。点包含了丰富的信息,包括三维坐标 X,Y,Z、颜色、分类值、强度值、时间等等。点云在组成特点上分为两种,一种是有序点云,一种是无序点云。
- 有序点云:一般由深度图还原的点云,有序点云按照图方阵一行一行的,从左上角到右下角排列,当然其中有一些无效点因为。有序点云按顺序排列,可以很容易的找到它的相邻点信息。有序点云在某些处理的时候还是很便利的,但是很多情况下是无法获取有序点云的。
- 无序点云:无序点云就是其中的点的集合,点排列之间没有任何顺序,点的顺序交换后没有任何影响。是比较普遍的点云形式,有序点云也可看做无序点云来处理。
而目前为止我常用的点云格式为PCD,PCD 格式具有文件头,用于描绘点云的整体信息:定义数字的可读头、尺寸、点云的维数和数据类型;一种数据段,可以是 ASCII 码或二进制码。数据本体部分由点的笛卡尔坐标构成,文本模式下以空格做分隔符。其中比较重要的是VIEWPOINT,这个字段存储了点云坐标系和世界参考坐标系之间的四元数关系。
二、icp算法
学习链接:https://blog.csdn.net/qq_41685265/article/details/107140349
icp算法本质不难,其实就是对源点云图和当前点云图进行迭代匹配,求出旋转矩阵(R)和平移向量(t)。
对于R和t而言,有许多办法,博客介绍了一种SVD算法:
- 首先定义两种点云的质心