4-SCSSA-CNN-BiLSTM时间序列预测
柯西变异和正余弦改进的麻雀搜索算法(SCSSA)优化卷积-长短期记忆神经网络的数据预测模型 Matlab语言
1.Matlab版本要在2020B以上。
优化的参数为:学习率,隐藏层节点数 ,正则化参数。
评价指标包括:R2、MAE、RMSE和MAPE等,图很多,出图结果如图所示,
2.SCSSA优化算法是基于麻雀优化算法改进,融合了柯西变异和正余弦。
如何使用Matlab实现基于柯西变异和正余弦改进的麻雀搜索算法(SCSSA)优化卷积-长短期记忆神经网络(CNN-BiLSTM)的时间序列预测模型。我们将从算法的实现、模型的构建、参数优化和结果评估等方面进行详细说明。
1. 环境准备
确保你安装了Matlab 2020b或更高版本,并且安装了Deep Learning Toolbox和Optimization Toolbox。
2. SCSSA优化算法
2.1 麻雀搜索算法(SSA)
麻雀搜索算法(SSA)是一种基于群体智能的优化算法,模拟麻雀群体的觅食行为。我们在此基础上进行改进,引入柯西变异和正余弦策略。
2.2 改进的SCSSA算法
function [bestPosition, bestFitness] = SCSSA(objectiveFunction, lb, ub, n, maxIter, dim)
% 初始化种群
positions = lb + rand(n, dim) .* (ub - lb);
fitness = zeros(n, 1);
% 计算初始适应度
for i = 1:n
fitness(i) = objectiveFunction(positions(i, :));
end
% 找到初始最优解
[bestFitness, bestIndex] = min(fitness);
bestPosition = positions(bestIndex, :);
% 参数设置
ST = 0.8; % 发现者的比例
PD = 0.7; % 发现者的发现概率
SD = 0.2; % 加入者的加入概率
for t = 1:maxIter
% 更新发现者位置
for i = 1:round(n * ST)
if rand < PD
r1 = rand;
r2 = rand;
positions(i, :) = bestPosition + r1 * (bestPosition - positions(i, :)) + r2 * (positions(i, :) - mean(positions));
else
r3 = rand;
positions(i, :) = bestPosition + r3 * (positions(i, :) - mean(positions));
end
end
% 更新加入者位置
for i = round(n * ST) + 1:n
if rand < SD
r4 = rand;
positions(i, :) = bestPosition + r4 * (positions(i, :) - mean(positions));
else
r5 = rand;
positions(i, :) = positions(i, :) + r5 * (positions(i, :) - mean(positions));
end
end
% 柯西变异
for i = 1:n
if rand < 0.1
positions(i, :) = positions(i, :) + 0.01 * cauchyMutation(dim);
end
end
% 正余弦策略
for i = 1:n
positions(i, :) = positions(i, :) + 0.01 * sineCosineMutation(dim, t, maxIter);
end
% 边界检查
positions = max(min(positions, ub), lb);
% 计算新适应度
for i = 1:n
fitness(i) = objectiveFunction(positions(i, :));
end
% 更新最优解
[currentBestFitness, currentBestIndex] = min(fitness);
if currentBestFitness < bestFitness
bestFitness = currentBestFitness;
bestPosition = positions(currentBestIndex, :);
end
% 显示当前迭代结果
disp(['Iteration: ', num2str(t), ' Best Fitness: ', num2str(bestFitness)]);
end
end
% 柯西变异函数
function mutation = cauchyMutation(dim)
mutation = rand(1, dim) ./ rand(1, dim);
end
% 正余弦变异函数
function mutation = sineCosineMutation(dim, t, maxIter)
a = 2 * pi * rand(1, dim);
r1 = rand(1, dim);
r2 = rand(1, dim);
mutation = a .* (r1 > 0.5) .* cos(2 * pi * r2) + a .* (r1 <= 0.5) .* sin(2 * pi * r2);
end
3. CNN-BiLSTM模型构建
3.1 数据准备
假设你已经有了时间序列数据 X_train
, Y_train
, X_val
, Y_val
, X_test
, Y_test
。
3.2 模型定义
function net = createCNNBiLSTMModel(inputSize, hiddenSize, outputSize)
layers = [
sequenceInputLayer(inputSize)
convolution2dLayer(3, 16, 'Padding', 'same')
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
bilstmLayer(hiddenSize, 'OutputMode', 'last')
fullyConnectedLayer(outputSize)
regressionLayer];
net = layerGraph(layers);
end
4. 目标函数
定义一个目标函数,用于评估模型的性能。
function fitness = objectiveFunction(params, X_train, Y_train, X_val, Y_val)
learningRate = params(1);
hiddenSize = round(params(2));
regularization = params(3);
options = trainingOptions('adam', ...
'InitialLearnRate', learningRate, ...
'MaxEpochs', 50, ...
'MiniBatchSize', 32, ...
'Shuffle', 'every-epoch', ...
'Verbose', false, ...
'Plots', 'none', ...
'ValidationData', {X_val, Y_val}, ...
'ValidationFrequency', 30, ...
'ValidationPatience', 10, ...
'L2Regularization', regularization);
inputSize = size(X_train, 2);
outputSize = size(Y_train, 2);
net = createCNNBiLSTMModel(inputSize, hiddenSize, outputSize);
net = trainNetwork(X_train, Y_train, net, options);
Y_pred = predict(net, X_val);
fitness = mean((Y_pred - Y_val).^2); % 使用均方误差作为适应度
end
5. 参数优化
使用SCSSA算法优化模型参数。
% 定义参数范围
lb = [0.001, 10, 0.001]; % 学习率, 隐藏层节点数, 正则化参数
ub = [0.1, 100, 0.1];
% 定义种群大小和最大迭代次数
n = 50;
maxIter = 100;
% 调用SCSSA算法
[bestParams, bestFitness] = SCSSA(@(params) objectiveFunction(params, X_train, Y_train, X_val, Y_val), lb, ub, n, maxIter, length(lb));
disp(['Best Parameters: ', num2str(bestParams)]);
disp(['Best Fitness: ', num2str(bestFitness)]);
6. 模型训练和评估
使用优化后的参数重新训练模型,并评估其性能。
learningRate = bestParams(1);
hiddenSize = round(bestParams(2));
regularization = bestParams(3);
options = trainingOptions('adam', ...
'InitialLearnRate', learningRate, ...
'MaxEpochs', 50, ...
'MiniBatchSize', 32, ...
'Shuffle', 'every-epoch', ...
'Verbose', true, ...
'Plots', 'training-progress', ...
'ValidationData', {X_val, Y_val}, ...
'ValidationFrequency', 30, ...
'ValidationPatience', 10, ...
'L2Regularization', regularization);
inputSize = size(X_train, 2);
outputSize = size(Y_train, 2);
net = createCNNBiLSTMModel(inputSize, hiddenSize, outputSize);
net = trainNetwork(X_train, Y_train, net, options);
% 预测
Y_pred_train = predict(net, X_train);
Y_pred_val = predict(net, X_val);
Y_pred_test = predict(net, X_test);
% 评估指标
R2_train = 1 - sum((Y_pred_train - Y_train).^2) / sum((Y_train - mean(Y_train)).^2);
R2_val = 1 - sum((Y_pred_val - Y_val).^2) / sum((Y_val - mean(Y_val)).^2);
R2_test = 1 - sum((Y_pred_test - Y_test).^2) / sum((Y_test - mean(Y_test)).^2);
MAE_train = mean(abs(Y_pred_train - Y_train));
MAE_val = mean(abs(Y_pred_val - Y_val));
MAE_test = mean(abs(Y_pred_test - Y_test));
RMSE_train = sqrt(mean((Y_pred_train - Y_train).^2));
RMSE_val = sqrt(mean((Y_pred_val - Y_val).^2));
RMSE_test = sqrt(mean((Y_pred_test - Y_test).^2));
MAPE_train = mean(abs((Y_pred_train - Y_train) ./ Y_train)) * 100;
MAPE_val = mean(abs((Y_pred_val - Y_val) ./ Y_val)) * 100;
MAPE_test = mean(abs((Y_pred_test - Y_test) ./ Y_test)) * 100;
% 输出评估指标
disp(['R2 (Train): ', num2str(R2_train)]);
disp(['R2 (Val): ', num2str(R2_val)]);
disp(['R2 (Test): ', num2str(R2_test)]);
disp(['MAE (Train): ', num2str(MAE_train)]);
disp(['MAE (Val): ', num2str(MAE_val)]);
disp(['MAE (Test): ', num2str(MAE_test)]);
disp(['RMSE (Train): ', num2str(RMSE_train)]);
disp(['RMSE (Val): ', num2str(RMSE_val)]);
disp(['RMSE (Test): ', num2str(RMSE_test)]);
disp(['MAPE (Train): ', num2str(MAPE_train)]);
disp(['MAPE (Val): ', num2str(MAPE_val)]);
disp(['MAPE (Test): ', num2str(MAPE_test)]);
% 绘制预测结果
figure;
subplot(3, 1, 1);
plot(Y_train, 'b', Y_pred_train, 'r--');
title('Training Set Prediction');
legend('True', 'Predicted');
subplot(3, 1, 2);
plot(Y_val, 'b', Y_pred_val, 'r--');
title('Validation Set Prediction');
legend('True', 'Predicted');
subplot(3, 1, 3);
plot(Y_test, 'b', Y_pred_test, 'r--');
title('Test Set Prediction');
legend('True', 'Predicted');
7. 总结
通过以上步骤,你可以使用Matlab实现基于柯西变异和正余弦改进的麻雀搜索算法(SCSSA)优化卷积-长短期记忆神经网络(CNN-BiLSTM)的时间序列预测模型。
标签:...,val,BiLSTM,SCSSA,positions,test,train,pred,CNN From: https://blog.csdn.net/2401_88441190/article/details/143959630