首页 > 编程语言 >医学图像算法之基于UNet3+(UNet+++)的肝脏CT分割

医学图像算法之基于UNet3+(UNet+++)的肝脏CT分割

时间:2024-10-25 20:47:07浏览次数:8  
标签:hd4 hd3 hd2 nn UT self UNet UNet3 +++

 第一步:准备数据

肝脏CT分割,总共有400张

702a32fae8714b47aa4403218acae96d.png

第二步:搭建模型

UNet3+主要是参考了UNet和UNet++两个网络结构。尽管UNet++采用了嵌套和密集跳过连接的网络结构(见图1(b)红色三角区域),但是它没有直接从多尺度信息中提取足够多的信息。此部分,在我理解而言UNet++虽然名义上通过嵌套和密集跳过连接进行了多尺度信息的利用,但是从本质上看基本都是短连接,基本上都对解码特征进行了再次处理,再加上各个连接的融合,多尺度信息的原始特征几乎没有得到特别好的利用,信号处理有些矫枉过正或是丢失。UNet3+利用了全尺度的跳跃连接(skip connection)和深度监督(deep supervisions)。全尺度的跳跃连接把来自不同尺度特征图中的高级语义与低级语义直接结合(当然需要必要的上采样操作);而深度监督则从多尺度聚合的特征图中学习层次表示。注意一点:UNet++和UNet3+都用到了深度监督,但是监督的位置是完全不一样的,从图1(b)、(c)中的Sup部分可以清楚的看到不同之处。

ea1d6c7e75eb4f1ca215aea4e6340671.png

在UNet3+中,可以从全尺度捕获细粒度的细节和粗粒度的语义。为了进一步从全尺寸的聚合特征图中学习层次表示法,每个边的输出都与一个混合损失函数相连接,这有助于精确分割,特别是对于在医学图像体积中出现不同尺度的器官。从图1中也可以看出,UNet3+的参数量明显小于UNet++。

第三步:代码

1)损失函数为:交叉熵损失函数

2)网络代码:

class UNet3Plus(nn.Module):
    def __init__(self, n_channels=3, n_classes=1, bilinear=True, feature_scale=4,
                 is_deconv=True, is_batchnorm=True):
        super(UNet3Plus, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear
        self.feature_scale = feature_scale
        self.is_deconv = is_deconv
        self.is_batchnorm = is_batchnorm
        filters = [16, 32, 64, 128, 256]

        ## -------------Encoder--------------
        self.conv1 = unetConv2(self.n_channels, filters[0], self.is_batchnorm)
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)

        self.conv2 = unetConv2(filters[0], filters[1], self.is_batchnorm)
        self.maxpool2 = nn.MaxPool2d(kernel_size=2)

        self.conv3 = unetConv2(filters[1], filters[2], self.is_batchnorm)
        self.maxpool3 = nn.MaxPool2d(kernel_size=2)

        self.conv4 = unetConv2(filters[2], filters[3], self.is_batchnorm)
        self.maxpool4 = nn.MaxPool2d(kernel_size=2)

        self.conv5 = unetConv2(filters[3], filters[4], self.is_batchnorm)

        ## -------------Decoder--------------
        self.CatChannels = filters[0]
        self.CatBlocks = 5
        self.UpChannels = self.CatChannels * self.CatBlocks

        '''stage 4d'''
        # h1->320*320, hd4->40*40, Pooling 8 times
        self.h1_PT_hd4 = nn.MaxPool2d(8, 8, ceil_mode=True)
        self.h1_PT_hd4_conv = nn.Conv2d(filters[0], self.CatChannels, 3, padding=1)
        self.h1_PT_hd4_bn = nn.BatchNorm2d(self.CatChannels)
        self.h1_PT_hd4_relu = nn.ReLU(inplace=True)

        # h2->160*160, hd4->40*40, Pooling 4 times
        self.h2_PT_hd4 = nn.MaxPool2d(4, 4, ceil_mode=True)
        self.h2_PT_hd4_conv = nn.Conv2d(filters[1], self.CatChannels, 3, padding=1)
        self.h2_PT_hd4_bn = nn.BatchNorm2d(self.CatChannels)
        self.h2_PT_hd4_relu = nn.ReLU(inplace=True)

        # h3->80*80, hd4->40*40, Pooling 2 times
        self.h3_PT_hd4 = nn.MaxPool2d(2, 2, ceil_mode=True)
        self.h3_PT_hd4_conv = nn.Conv2d(filters[2], self.CatChannels, 3, padding=1)
        self.h3_PT_hd4_bn = nn.BatchNorm2d(self.CatChannels)
        self.h3_PT_hd4_relu = nn.ReLU(inplace=True)

        # h4->40*40, hd4->40*40, Concatenation
        self.h4_Cat_hd4_conv = nn.Conv2d(filters[3], self.CatChannels, 3, padding=1)
        self.h4_Cat_hd4_bn = nn.BatchNorm2d(self.CatChannels)
        self.h4_Cat_hd4_relu = nn.ReLU(inplace=True)

        # hd5->20*20, hd4->40*40, Upsample 2 times
        self.hd5_UT_hd4 = nn.Upsample(scale_factor=2, mode='bilinear')  # 14*14
        self.hd5_UT_hd4_conv = nn.Conv2d(filters[4], self.CatChannels, 3, padding=1)
        self.hd5_UT_hd4_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd5_UT_hd4_relu = nn.ReLU(inplace=True)

        # fusion(h1_PT_hd4, h2_PT_hd4, h3_PT_hd4, h4_Cat_hd4, hd5_UT_hd4)
        self.conv4d_1 = nn.Conv2d(self.UpChannels, self.UpChannels, 3, padding=1)  # 16
        self.bn4d_1 = nn.BatchNorm2d(self.UpChannels)
        self.relu4d_1 = nn.ReLU(inplace=True)

        '''stage 3d'''
        # h1->320*320, hd3->80*80, Pooling 4 times
        self.h1_PT_hd3 = nn.MaxPool2d(4, 4, ceil_mode=True)
        self.h1_PT_hd3_conv = nn.Conv2d(filters[0], self.CatChannels, 3, padding=1)
        self.h1_PT_hd3_bn = nn.BatchNorm2d(self.CatChannels)
        self.h1_PT_hd3_relu = nn.ReLU(inplace=True)

        # h2->160*160, hd3->80*80, Pooling 2 times
        self.h2_PT_hd3 = nn.MaxPool2d(2, 2, ceil_mode=True)
        self.h2_PT_hd3_conv = nn.Conv2d(filters[1], self.CatChannels, 3, padding=1)
        self.h2_PT_hd3_bn = nn.BatchNorm2d(self.CatChannels)
        self.h2_PT_hd3_relu = nn.ReLU(inplace=True)

        # h3->80*80, hd3->80*80, Concatenation
        self.h3_Cat_hd3_conv = nn.Conv2d(filters[2], self.CatChannels, 3, padding=1)
        self.h3_Cat_hd3_bn = nn.BatchNorm2d(self.CatChannels)
        self.h3_Cat_hd3_relu = nn.ReLU(inplace=True)

        # hd4->40*40, hd4->80*80, Upsample 2 times
        self.hd4_UT_hd3 = nn.Upsample(scale_factor=2, mode='bilinear')  # 14*14
        self.hd4_UT_hd3_conv = nn.Conv2d(self.UpChannels, self.CatChannels, 3, padding=1)
        self.hd4_UT_hd3_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd4_UT_hd3_relu = nn.ReLU(inplace=True)

        # hd5->20*20, hd4->80*80, Upsample 4 times
        self.hd5_UT_hd3 = nn.Upsample(scale_factor=4, mode='bilinear')  # 14*14
        self.hd5_UT_hd3_conv = nn.Conv2d(filters[4], self.CatChannels, 3, padding=1)
        self.hd5_UT_hd3_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd5_UT_hd3_relu = nn.ReLU(inplace=True)

        # fusion(h1_PT_hd3, h2_PT_hd3, h3_Cat_hd3, hd4_UT_hd3, hd5_UT_hd3)
        self.conv3d_1 = nn.Conv2d(self.UpChannels, self.UpChannels, 3, padding=1)  # 16
        self.bn3d_1 = nn.BatchNorm2d(self.UpChannels)
        self.relu3d_1 = nn.ReLU(inplace=True)

        '''stage 2d '''
        # h1->320*320, hd2->160*160, Pooling 2 times
        self.h1_PT_hd2 = nn.MaxPool2d(2, 2, ceil_mode=True)
        self.h1_PT_hd2_conv = nn.Conv2d(filters[0], self.CatChannels, 3, padding=1)
        self.h1_PT_hd2_bn = nn.BatchNorm2d(self.CatChannels)
        self.h1_PT_hd2_relu = nn.ReLU(inplace=True)

        # h2->160*160, hd2->160*160, Concatenation
        self.h2_Cat_hd2_conv = nn.Conv2d(filters[1], self.CatChannels, 3, padding=1)
        self.h2_Cat_hd2_bn = nn.BatchNorm2d(self.CatChannels)
        self.h2_Cat_hd2_relu = nn.ReLU(inplace=True)

        # hd3->80*80, hd2->160*160, Upsample 2 times
        self.hd3_UT_hd2 = nn.Upsample(scale_factor=2, mode='bilinear')  # 14*14
        self.hd3_UT_hd2_conv = nn.Conv2d(self.UpChannels, self.CatChannels, 3, padding=1)
        self.hd3_UT_hd2_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd3_UT_hd2_relu = nn.ReLU(inplace=True)

        # hd4->40*40, hd2->160*160, Upsample 4 times
        self.hd4_UT_hd2 = nn.Upsample(scale_factor=4, mode='bilinear')  # 14*14
        self.hd4_UT_hd2_conv = nn.Conv2d(self.UpChannels, self.CatChannels, 3, padding=1)
        self.hd4_UT_hd2_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd4_UT_hd2_relu = nn.ReLU(inplace=True)

        # hd5->20*20, hd2->160*160, Upsample 8 times
        self.hd5_UT_hd2 = nn.Upsample(scale_factor=8, mode='bilinear')  # 14*14
        self.hd5_UT_hd2_conv = nn.Conv2d(filters[4], self.CatChannels, 3, padding=1)
        self.hd5_UT_hd2_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd5_UT_hd2_relu = nn.ReLU(inplace=True)

        # fusion(h1_PT_hd2, h2_Cat_hd2, hd3_UT_hd2, hd4_UT_hd2, hd5_UT_hd2)
        self.conv2d_1 = nn.Conv2d(self.UpChannels, self.UpChannels, 3, padding=1)  # 16
        self.bn2d_1 = nn.BatchNorm2d(self.UpChannels)
        self.relu2d_1 = nn.ReLU(inplace=True)

        '''stage 1d'''
        # h1->320*320, hd1->320*320, Concatenation
        self.h1_Cat_hd1_conv = nn.Conv2d(filters[0], self.CatChannels, 3, padding=1)
        self.h1_Cat_hd1_bn = nn.BatchNorm2d(self.CatChannels)
        self.h1_Cat_hd1_relu = nn.ReLU(inplace=True)

        # hd2->160*160, hd1->320*320, Upsample 2 times
        self.hd2_UT_hd1 = nn.Upsample(scale_factor=2, mode='bilinear')  # 14*14
        self.hd2_UT_hd1_conv = nn.Conv2d(self.UpChannels, self.CatChannels, 3, padding=1)
        self.hd2_UT_hd1_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd2_UT_hd1_relu = nn.ReLU(inplace=True)

        # hd3->80*80, hd1->320*320, Upsample 4 times
        self.hd3_UT_hd1 = nn.Upsample(scale_factor=4, mode='bilinear')  # 14*14
        self.hd3_UT_hd1_conv = nn.Conv2d(self.UpChannels, self.CatChannels, 3, padding=1)
        self.hd3_UT_hd1_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd3_UT_hd1_relu = nn.ReLU(inplace=True)

        # hd4->40*40, hd1->320*320, Upsample 8 times
        self.hd4_UT_hd1 = nn.Upsample(scale_factor=8, mode='bilinear')  # 14*14
        self.hd4_UT_hd1_conv = nn.Conv2d(self.UpChannels, self.CatChannels, 3, padding=1)
        self.hd4_UT_hd1_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd4_UT_hd1_relu = nn.ReLU(inplace=True)

        # hd5->20*20, hd1->320*320, Upsample 16 times
        self.hd5_UT_hd1 = nn.Upsample(scale_factor=16, mode='bilinear')  # 14*14
        self.hd5_UT_hd1_conv = nn.Conv2d(filters[4], self.CatChannels, 3, padding=1)
        self.hd5_UT_hd1_bn = nn.BatchNorm2d(self.CatChannels)
        self.hd5_UT_hd1_relu = nn.ReLU(inplace=True)

        # fusion(h1_Cat_hd1, hd2_UT_hd1, hd3_UT_hd1, hd4_UT_hd1, hd5_UT_hd1)
        self.conv1d_1 = nn.Conv2d(self.UpChannels, self.UpChannels, 3, padding=1)  # 16
        self.bn1d_1 = nn.BatchNorm2d(self.UpChannels)
        self.relu1d_1 = nn.ReLU(inplace=True)

        # output
        self.outconv1 = nn.Conv2d(self.UpChannels, n_classes, 3, padding=1)

        # initialise weights
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init_weights(m, init_type='kaiming')
            elif isinstance(m, nn.BatchNorm2d):
                init_weights(m, init_type='kaiming')

    def forward(self, inputs):
        ## -------------Encoder-------------
        h1 = self.conv1(inputs)  # h1->320*320*64

        h2 = self.maxpool1(h1)
        h2 = self.conv2(h2)  # h2->160*160*128

        h3 = self.maxpool2(h2)
        h3 = self.conv3(h3)  # h3->80*80*256

        h4 = self.maxpool3(h3)
        h4 = self.conv4(h4)  # h4->40*40*512

        h5 = self.maxpool4(h4)
        hd5 = self.conv5(h5)  # h5->20*20*1024

        ## -------------Decoder-------------
        h1_PT_hd4 = self.h1_PT_hd4_relu(self.h1_PT_hd4_bn(self.h1_PT_hd4_conv(self.h1_PT_hd4(h1))))
        h2_PT_hd4 = self.h2_PT_hd4_relu(self.h2_PT_hd4_bn(self.h2_PT_hd4_conv(self.h2_PT_hd4(h2))))
        h3_PT_hd4 = self.h3_PT_hd4_relu(self.h3_PT_hd4_bn(self.h3_PT_hd4_conv(self.h3_PT_hd4(h3))))
        h4_Cat_hd4 = self.h4_Cat_hd4_relu(self.h4_Cat_hd4_bn(self.h4_Cat_hd4_conv(h4)))
        hd5_UT_hd4 = self.hd5_UT_hd4_relu(self.hd5_UT_hd4_bn(self.hd5_UT_hd4_conv(self.hd5_UT_hd4(hd5))))
        hd4 = self.relu4d_1(self.bn4d_1(self.conv4d_1(
            torch.cat((h1_PT_hd4, h2_PT_hd4, h3_PT_hd4, h4_Cat_hd4, hd5_UT_hd4), 1))))  # hd4->40*40*UpChannels

        h1_PT_hd3 = self.h1_PT_hd3_relu(self.h1_PT_hd3_bn(self.h1_PT_hd3_conv(self.h1_PT_hd3(h1))))
        h2_PT_hd3 = self.h2_PT_hd3_relu(self.h2_PT_hd3_bn(self.h2_PT_hd3_conv(self.h2_PT_hd3(h2))))
        h3_Cat_hd3 = self.h3_Cat_hd3_relu(self.h3_Cat_hd3_bn(self.h3_Cat_hd3_conv(h3)))
        hd4_UT_hd3 = self.hd4_UT_hd3_relu(self.hd4_UT_hd3_bn(self.hd4_UT_hd3_conv(self.hd4_UT_hd3(hd4))))
        hd5_UT_hd3 = self.hd5_UT_hd3_relu(self.hd5_UT_hd3_bn(self.hd5_UT_hd3_conv(self.hd5_UT_hd3(hd5))))
        hd3 = self.relu3d_1(self.bn3d_1(self.conv3d_1(
            torch.cat((h1_PT_hd3, h2_PT_hd3, h3_Cat_hd3, hd4_UT_hd3, hd5_UT_hd3), 1))))  # hd3->80*80*UpChannels

        h1_PT_hd2 = self.h1_PT_hd2_relu(self.h1_PT_hd2_bn(self.h1_PT_hd2_conv(self.h1_PT_hd2(h1))))
        h2_Cat_hd2 = self.h2_Cat_hd2_relu(self.h2_Cat_hd2_bn(self.h2_Cat_hd2_conv(h2)))
        hd3_UT_hd2 = self.hd3_UT_hd2_relu(self.hd3_UT_hd2_bn(self.hd3_UT_hd2_conv(self.hd3_UT_hd2(hd3))))
        hd4_UT_hd2 = self.hd4_UT_hd2_relu(self.hd4_UT_hd2_bn(self.hd4_UT_hd2_conv(self.hd4_UT_hd2(hd4))))
        hd5_UT_hd2 = self.hd5_UT_hd2_relu(self.hd5_UT_hd2_bn(self.hd5_UT_hd2_conv(self.hd5_UT_hd2(hd5))))
        hd2 = self.relu2d_1(self.bn2d_1(self.conv2d_1(
            torch.cat((h1_PT_hd2, h2_Cat_hd2, hd3_UT_hd2, hd4_UT_hd2, hd5_UT_hd2), 1))))  # hd2->160*160*UpChannels

        h1_Cat_hd1 = self.h1_Cat_hd1_relu(self.h1_Cat_hd1_bn(self.h1_Cat_hd1_conv(h1)))
        hd2_UT_hd1 = self.hd2_UT_hd1_relu(self.hd2_UT_hd1_bn(self.hd2_UT_hd1_conv(self.hd2_UT_hd1(hd2))))
        hd3_UT_hd1 = self.hd3_UT_hd1_relu(self.hd3_UT_hd1_bn(self.hd3_UT_hd1_conv(self.hd3_UT_hd1(hd3))))
        hd4_UT_hd1 = self.hd4_UT_hd1_relu(self.hd4_UT_hd1_bn(self.hd4_UT_hd1_conv(self.hd4_UT_hd1(hd4))))
        hd5_UT_hd1 = self.hd5_UT_hd1_relu(self.hd5_UT_hd1_bn(self.hd5_UT_hd1_conv(self.hd5_UT_hd1(hd5))))
        hd1 = self.relu1d_1(self.bn1d_1(self.conv1d_1(
            torch.cat((h1_Cat_hd1, hd2_UT_hd1, hd3_UT_hd1, hd4_UT_hd1, hd5_UT_hd1), 1))))  # hd1->320*320*UpChannels

        d1 = self.outconv1(hd1)  # d1->320*320*n_classes
        return F.sigmoid(d1)

第四步:统计一些指标(训练过程中的loss和miou)

f041a8103b384b6ab04ab18b2e24f1b6.png

c8dc6caedb2943c5be0877322048fbc0.png

第五步:搭建GUI界面

0609e787228b4248998127bdba9cfd76.png

5337f0a706a6494e918432414358d9da.png

第六步:整个工程的内容

bab81ebbb6fb40f5b6378345224448a0.png

项目源码下载:

整套算法系列:https://blog.csdn.net/u013289254/category_12815136.html?spm=1001.2014.3001.5482icon-default.png?t=O83Ahttps://blog.csdn.net/u013289254/category_12815136.html?spm=1001.2014.3001.5482项目源码下载地址:关注WX【AI街潜水的八角】,回复【肝脏CT分割】即可下载

整套项目源码内容包含

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

标签:hd4,hd3,hd2,nn,UT,self,UNet,UNet3,+++
From: https://blog.csdn.net/u013289254/article/details/143243468

相关文章

  • Unet网络搭建Day1
    Pycharm内搭建虚拟环境:一、将PyCharm中的终端运行前面的PS修改成当前环境解决方法:只需要在pycharm的设置中修改一些terminal的环境即可,具体步骤如下:1.打开pycharm中的settings;2.找到Terminal选项;3.将shellpath的位置改为cmd.exe;4.点击ok;5.重启pycharm即可。二、wandb......
  • 深度学习(UNet)
        和FCN类似,UNet是另一个做语义分割的网络,网络从输入到输出中间呈一个U型而得名。相比于FCN,UNet增加了更多的中间连接,能够更好处理不同尺度上的特征。网络结构如下:下面代码是用UNet对VOC数据集做的语义分割。importtorchimporttorch.nnasnnimporttorch.opt......
  • 小白也能学会!unet医学图像分割(附源码和中文论文)
    本文主要介绍如何通过unet模型来训练自己的图像分割模型。即使没有编程经验,对照步骤执行也能训练模型。文中涉及的显微镜细胞图像分割数据集、模型训练代码(pytorch)、unet中文版论文等资源放于文末获取。目录1.论文摘要2.算法简述3.代码介绍4.数据准备5.模型训练6.模......
  • Acunetix v24.8 - 29 Aug 2024 高级版漏洞扫描器(最新版) 附Windows/Linux下载链接
    前言AcunetixPremium是一种Web应用程序安全解决方案,用于管理多个网站、Web应用程序和API的安全。集成功能允许您自动化DevOps和问题管理基础架构。AcunetixPremium:全面的Web应用程序安全解决方案Web应用程序对于企业和组织与客户、合作伙伴和员工的联系至关......
  • Unet改进35:添加FastKANConv2DLayer(2024最新改进方法)
    本文内容:在不同位置添加FastKANConv2DLayer目录论文简介1.步骤一2.步骤二3.步骤三4.步骤四论文简介地址1.步骤一新建blocks/fastkan.py文件,添加如下代码:importtorchimporttorch.nnasnnclassRadialBasisFunction(nn.Module):def__init__(......
  • Acunetix v24.8 - 29 Aug 2024 高级版漏洞扫描器(最新版) 附Windows/Linux下载链接
    前言AcunetixPremium是一种Web应用程序安全解决方案,用于管理多个网站、Web应用程序和API的安全。集成功能允许您自动化DevOps和问题管理基础架构。AcunetixPremium:全面的Web应用程序安全解决方案Web应用程序对于企业和组织与客户、合作伙伴和员工的联系至关......
  • 工具分享 | 24年最新AWVS/Acunetix Premium V24.8高级版漏洞扫描器(最新版)Windows/Li
    前言AcunetixPremium是一种Web应用程序安全解决方案,用于管理多个网站、Web应用程序和API的安全。集成功能允许您自动化DevOps和问题管理基础架构。AcunetixPremium:全面的Web应用程序安全解决方案Web应用程序对于企业和组织与客户、合作伙伴和员工的联系至关......
  • C++入门基础知识64——【关于 C+++数据抽象】
    成长路上不孤单......
  • nnunetv2系列:使用默认的预测类推理2D数据
    nnunetv2系列:使用默认的预测类推理2D数据这里参考源代码nnUNet/nnunetv2/inference/predict_from_raw_data.py中给的示例进行调整和测试。代码示例fromtorchimportdevicefromnnunetv2.inference.predict_from_raw_dataimportnnUNetPredictor#fromnnunetv2.pat......
  • nnunetv2系列:2D实例分割数据集转换
    nnunetv2系列:2D实例分割数据集转换2D实例分割数据集转换这里主要参考官方源文件nnUNet/nnunetv2/dataset_conversion/Dataset120_RoadSegmentation.py,注释了一些不必要的操作。数据集下载链接:massachusetts-roads-dataset重要提示:nnU-Net只能用于使用无损(或无)压缩......