首页 > 编程语言 >顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比

顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比

时间:2024-09-19 11:52:21浏览次数:9  
标签:num name 顶刊 Attention 算法 train test end size


顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比


目录

  • 顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比
  • 预测效果
  • 基本介绍
  • 程序设计
  • 参考资料


预测效果

顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比_Multihead

顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比_Attention_02


顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比_Attention_03


顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比_多头注意力机制_04


顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比_Multihead_05


顶刊算法 | Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比_Attention_06

基本介绍

1.Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比,优化前后对比,要求Matlab2023版以上;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.鹈鹕算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现鹈鹕算法POA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测,优化前后对比
%% POA算法优化CNN-LSTM-MATT,实现多变量时间序列预测

clc;
clear 
close all
X = xlsread('data.xlsx');
num_samples = length(X);                            % 样本个数 
kim = 10;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);

%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,end)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.9;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺 %% 来自:CSDN《机器学习之心》

for i = 1:size(P_train,2)
    trainD{i,:} = (reshape(p_train(:,i),size(p_train,1),1,1));
end

for i = 1:size(p_test,2)
    testD{i,:} = (reshape(p_test(:,i),size(p_test,1),1,1));
end


targetD =  t_train;
targetD_test  =  t_test;

numFeatures = size(p_train,1);


layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    lstmLayer(25,'Outputmode','last','name','hidden1') 
    selfAttentionLayer(2,2)          %创建2个头,2个键和查询通道的自注意力层  
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

标签:num,name,顶刊,Attention,算法,train,test,end,size
From: https://blog.51cto.com/u_15735367/12055550

相关文章

  • CNN-SVM模型 | Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络结合支持向量机多特征分
    CNN-SVM模型|Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络结合支持向量机多特征分类预测目录CNN-SVM模型|Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络结合支持向量机多特征分类预测分类效果基本描述程序设计参考资料分类效果基本描述1.Matlab实现SO-CNN-SVM蛇群算法优化......
  • 【开题报告+背景+源码】基于过滤协同算法苗族银饰推荐系统的设计与实现
    项目背景与意义课题苗族银饰推荐系统,应用Java技术设计开发一个苗族银饰推荐系统,实现用户购买苗族银饰商品方便快捷,不受时间和空间的限制功能,提供用户能够更快更好地获取自己想要的苗族银饰商品推荐服务,达到向消费者提供商品推荐,帮助他们发现感兴趣的苗族银饰商品并增加购买意......
  • 基于档案演化路径的快速收敛EO多目标优化算法及其在工程设计问题中的应用
    目录1.摘要2.基于档案演化路径机制的快速收敛多目标平衡优化算法(FC‑MOEO/AEP)2.1单目标平衡优化算法EO2.2多目标平衡优化算法FC‑MOEO/AEP3.结果展示4.参考文献5.代码获取1.摘要在实际的工程优化问题中,耗时的目标函数是不可避免的。这类函数使得元启发式方法......
  • 算法:动态规划思路(仅作记录)
    以leetcode70题爬楼梯为例:假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?递归一共两种爬楼梯的方式如果最后一步要用到方法1,那么我们得先爬到n−1,要解决的问题缩小成:从0爬到n−1有多少种不同的方法。......
  • 自动驾驶运动规划学习_碰撞检测算法_GJK
    自动驾驶运动规划学习:碰撞检测算法:GJKGilbert–Johnson–Keerthi(GJK)算法,是一种用于检测两个凸集是否重叠的高效算法,并且可以得到两个凸集的最小距离.1.4.1 GJK算法原理1.4.1.1 闵可夫斯基差(Minkowski Difference)1.4.1.3 凸性在二维空间中,如果一个凸集包含原......
  • Dijkstra 算法
    普通堆实现的Dijkstra算法时间复杂度为O(m*logm),m为边数distance[i]表示从源点到i点的最短距离,visited[i]表示i节点是否从小根堆弹出过准备好小根堆,小根堆存放记录:(x点,源点到x的距离),小根堆根据距离排序令distance[源点]=0,(源点,0)入堆从小根堆弹出(u......
  • Yargs里的Levenshtein距离算法
    “Yargs是一个Node.js库,专为那些想要解析命令行选项字符串的开发者设计。”yargs介绍yargs是一个用于解析命令行参数的流行库,周下载量达到了惊人的93154k,它能帮助开发者轻松地定义CLI(命令行接口),并提供参数处理、命令组织、help文本自动生成等功能。它通过简洁的API使......
  • 地平线占用预测 FlashOcc 参考算法-V1.0
    1.简介3DOccupancyNetworks的基本思路是将三维空间划分成体素网格,并对每个网格进行各类感知任务的预测。目前以网格为中心的方法能够预测每个网格单元的占用率、语义类别、未来运动位移和实例信息。3Doccupancy可以对道路障碍物进行更细粒度的划分,同时获取更精确的占用和语......
  • 代码随想录算法 - 回溯算法1
    题目177.组合给定两个整数n和k,返回范围[1,n]中所有可能的k个数的组合。你可以按任何顺序返回答案。示例1:输入:n=4,k=2输出:[[2,4],[3,4],[2,3],[1,2],[1,3],[1,4],]示例2:输入:n=1,k=1输出:[[1]]提示:1<=n<=201<=k<=......
  • 深入理解算法效率:时间复杂度与空间复杂度
    目录引言一、算法效率的基础二、时间复杂度1.概念2.常见类型1.O(1)—常数阶 2.O(n)—线性阶3.O(n^2)—平方阶4.O(2^......