首页 > 编程语言 >代码随想录算法day24 | 贪心算法part02 | 122.买卖股票的最佳时机II,55. 跳跃游戏,45.跳跃游戏II,1005.K次取反后最大化的数组和

代码随想录算法day24 | 贪心算法part02 | 122.买卖股票的最佳时机II,55. 跳跃游戏,45.跳跃游戏II,1005.K次取反后最大化的数组和

时间:2024-08-28 10:25:51浏览次数:19  
标签:下标 nums int 步数 II 算法 跳跃 覆盖范围 贪心

122.买卖股票的最佳时机 II

本题解法很巧妙,本题大家可以先自己思考一下然后再看题解,会有惊喜!

力扣题目链接(opens new window)

给定一个数组,它的第  i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

  • 输入: [7,1,5,3,6,4]
  • 输出: 7
  • 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2:

  • 输入: [1,2,3,4,5]
  • 输出: 4
  • 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例  3:

  • 输入: [7,6,4,3,1]
  • 输出: 0
  • 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 3 * 10 ^ 4
  • 0 <= prices[i] <= 10 ^ 4

本题首先要清楚两点:

  • 只有一只股票!
  • 当前只有买股票或者卖股票的操作

想获得利润至少要两天为一个交易单元。

这道题目可能我们只会想,选一个低的买入,再选个高的卖,再选一个低的买入.....循环反复。

如果想到其实最终利润是可以分解的,那么本题就很容易了!

如何分解呢?

假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。

相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。

此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑!

那么根据 prices 可以得到每天的利润序列:(prices[i] - prices[i - 1]).....(prices[1] - prices[0])。

如图:

122.买卖股票的最佳时机II

一些同学陷入:第一天怎么就没有利润呢,第一天到底算不算的困惑中。

第一天当然没有利润,至少要第二天才会有利润,所以利润的序列比股票序列少一天!

从图中可以发现,其实我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间

那么只收集正利润就是贪心所贪的地方!

局部最优:收集每天的正利润,全局最优:求得最大利润

局部最优可以推出全局最优,找不出反例,试一试贪心!

对应 Java 代码如下:

class Solution {
    public int maxProfit(int[] prices) {
        int result = 0;
        for (int i = 1; i < prices.length; i++) {
            result += Math.max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

总结

股票问题其实是一个系列的,属于动态规划的范畴,因为目前在讲解贪心系列,所以股票问题会在之后的动态规划系列中详细讲解。

有时候,贪心往往比动态规划更巧妙,更好用,所以别小看了贪心算法

本题中理解利润拆分是关键点! 不要整块的去看,而是把整体利润拆为每天的利润。

一旦想到这里了,很自然就会想到贪心了,即:只收集每天的正利润,最后稳稳的就是最大利润了。


55. 跳跃游戏

本题如果没接触过,很难想到,所以不要自己憋时间太久,读题思考一会,没思路立刻看题解

力扣题目链接(opens new window)

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个位置。

示例  1:

  • 输入: [2,3,1,1,4]
  • 输出: true
  • 解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。

示例  2:

  • 输入: [3,2,1,0,4]
  • 输出: false
  • 解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。

刚看到本题一开始可能想:当前位置元素如果是 3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?

其实跳几步无所谓,关键在于可跳的覆盖范围!

不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。

这个范围内,别管是怎么跳的,反正一定可以跳过来。

那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点

局部最优推出全局最优,找不出反例,试试贪心!

如图:

i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。

而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。

如果 cover 大于等于了终点下标,直接 return true 就可以了。

Java 代码如下:

class Solution {
    public boolean canJump(int[] nums) {
        if (nums.length == 1) {
            return true;
        }
        //覆盖范围, 初始覆盖范围应该是0,因为下面的迭代是从下标0开始的
        int coverRange = 0;
        //在覆盖范围内更新最大的覆盖范围
        for (int i = 0; i <= coverRange; i++) {
            coverRange = Math.max(coverRange, i + nums[i]);
            if (coverRange >= nums.length - 1) {
                return true;
            }
        }
        return false;
    }
}
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

总结

这道题目关键点在于:不用拘泥于每次究竟跳几步,而是看覆盖范围,覆盖范围内一定是可以跳过来的,不用管是怎么跳的。

大家可以看出思路想出来了,代码还是非常简单的。

一些同学可能感觉,贪心系列题目和题目之间貌似没有什么联系?

是真的就是没什么联系,因为贪心无套路!没有个整体的贪心框架解决一系列问题,只能是接触各种类型的题目锻炼自己的贪心思维!


45.跳跃游戏 II

本题同样不容易想出来。贪心就是这样,有的时候 会感觉简单到离谱,有时候,难的不行,主要是不容易想到。

力扣题目链接(opens new window)

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

示例:

  • 输入: [2,3,1,1,4]
  • 输出: 2
  • 解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳  1  步,然后跳  3  步到达数组的最后一个位置。

说明: 假设你总是可以到达数组的最后一个位置。

本题相对于 55.跳跃游戏 还是难了不少。

但思路是相似的,还是要看最大覆盖范围。

本题要计算最少步数,那么就要想清楚什么时候步数才一定要加一呢?

贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。

思路虽然是这样,但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。

所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!

这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖

如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。

如图:

45.跳跃游戏II

图中覆盖范围的意义在于,只要红色的区域,最多两步一定可以到!(不用管具体怎么跳,反正一定可以跳到)

方法一

从图中可以看出来,就是移动下标达到了当前覆盖的最远距离下标时,步数就要加一,来增加覆盖距离。最后的步数就是最少步数。

这里还是有个特殊情况需要考虑,当移动下标达到了当前覆盖的最远距离下标时

  • 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
  • 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。

Java 代码如下:(详细注释)

class Solution {
    public int jump(int[] nums) {
        if (nums == null || nums.length == 0 || nums.length == 1) {
            return 0;
        }
        //记录跳跃的次数
        int count=0;
        //当前的覆盖最大区域
        int curDistance = 0;
        //最大的覆盖区域
        int maxDistance = 0;
        for (int i = 0; i < nums.length; i++) {
            //在可覆盖区域内更新最大的覆盖区域
            maxDistance = Math.max(maxDistance,i+nums[i]);
            //说明当前一步,再跳一步就到达了末尾
            if (maxDistance>=nums.length-1){
                count++;
                break;
            }
            //走到当前覆盖的最大区域时,更新下一步可达的最大区域
            if (i==curDistance){
                curDistance = maxDistance;
                count++;
            }
        }
        return count;
    }
}
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

方法二

依然是贪心,思路和方法一差不多,代码可以简洁一些。

针对于方法一的特殊情况,可以统一处理,即:移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不考虑是不是终点的情况。

想要达到这样的效果,只要让移动下标,最大只能移动到 nums.size - 2 的地方就可以了。

因为当移动下标指向 nums.size - 2 时:

  • 如果移动下标等于当前覆盖最大距离下标, 需要再走一步,因为最后一步一定是可以到的终点。(题目假设总是可以到达数组的最后一个位置),如图: 

    45.跳跃游戏II2

  • 如果移动下标不等于当前覆盖最大距离下标,说明当前覆盖最远距离就可以直接达到终点了,不需要再走一步。如图:

45.跳跃游戏II1

代码如下:

class Solution {
    public int jump(int[] nums) {
        int result = 0;
        // 当前覆盖的最远距离下标
        int end = 0;
        // 下一步覆盖的最远距离下标
        int temp = 0;
        for (int i = 0; i <= end && end < nums.length - 1; ++i) {
            temp = Math.max(temp, i + nums[i]);
            // 可达位置的改变次数就是跳跃次数
            if (i == end) {
                end = temp;
                result++;
            }
        }
        return result;
    }
}
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

可以看出版本二的代码相对于版本一简化了不少!

其精髓在于控制移动下标 i 只移动到 nums.size() - 2 的位置,所以移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不用考虑别的了。

总结

相信大家可以发现,这道题目相当于 55.跳跃游戏 难了不止一点。

但代码又十分简单,贪心就是这么巧妙。

理解本题的关键在于:以最小的步数增加最大的覆盖范围,直到覆盖范围覆盖了终点,这个范围内最少步数一定可以跳到,不用管具体是怎么跳的,不纠结于一步究竟跳一个单位还是两个单位。


1005.K次取反后最大化的数组和

本题简单一些,估计大家不用想着贪心 ,用自己直觉也会有思路。

力扣题目链接(opens new window)

给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)

以这种方式修改数组后,返回数组可能的最大和。

示例 1:

  • 输入:A = [4,2,3], K = 1
  • 输出:5
  • 解释:选择索引 (1) ,然后 A 变为 [4,-2,3]。

示例 2:

  • 输入:A = [3,-1,0,2], K = 3
  • 输出:6
  • 解释:选择索引 (1, 2, 2) ,然后 A 变为 [3,1,0,2]。

示例 3:

  • 输入:A = [2,-3,-1,5,-4], K = 2
  • 输出:13
  • 解释:选择索引 (1, 4) ,然后 A 变为 [2,3,-1,5,4]。

提示:

  • 1 <= A.length <= 10000
  • 1 <= K <= 10000
  • -100 <= A[i] <= 100

本题思路其实比较好想了,如何可以让数组和最大呢?

贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。

局部最优可以推出全局最优。

那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。

那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。

虽然这道题目大家做的时候,可能都不会去想什么贪心算法,一鼓作气,就AC了。

我这里其实是为了给大家展现出来 经常被大家忽略的贪心思路,这么一道简单题,就用了两次贪心!

那么本题的解题步骤为:

  • 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
  • 第二步:从前向后遍历,遇到负数将其变为正数,同时K--
  • 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
  • 第四步:求和

 对应 Java 代码如下:

class Solution {
    public int largestSumAfterKNegations(int[] nums, int K) {
    	// 将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
	nums = IntStream.of(nums)
		     .boxed()
		     .sorted((o1, o2) -> Math.abs(o2) - Math.abs(o1))
		     .mapToInt(Integer::intValue).toArray();
	int len = nums.length;	    
	for (int i = 0; i < len; i++) {
	    //从前向后遍历,遇到负数将其变为正数,同时K--
	    if (nums[i] < 0 && K > 0) {
	    	nums[i] = -nums[i];
	    	K--;
	    }
	}
	// 如果K还大于0,那么反复转变数值最小的元素,将K用完

	if (K % 2 == 1) nums[len - 1] = -nums[len - 1];
	return Arrays.stream(nums).sum();

    }
}

// 不用绝对值大小排序,而是sort两次
class Solution {
    public int largestSumAfterKNegations(int[] nums, int k) {
        if (nums.length == 1) return nums[0];

        // 排序:先把负数处理了
        Arrays.sort(nums); 

        for (int i = 0; i < nums.length && k > 0; i++) { // 贪心点, 通过负转正, 消耗尽可能多的k
            if (nums[i] < 0) {
                nums[i] = -nums[i];
                k--;
            }
        }

        // 退出循环, k > 0 || k < 0 (k消耗完了不用讨论)
        if (k % 2 == 1) { // k > 0 && k is odd:对于负数:负-正-负-正
            Arrays.sort(nums); // 再次排序得到剩余的负数,或者最小的正数
            nums[0] = -nums[0];
        }
        // k > 0 && k is even,flip数字不会产生影响: 对于负数: 负-正-负;对于正数:正-负-正 

        int sum = 0;
        for (int num : nums) { // 计算最大和
            sum += num;
        }
        return sum;
    }
}
  • 时间复杂度: O(nlogn)
  • 空间复杂度: O(1)

总结

贪心的题目如果简单起来,会让人简单到开始怀疑:本来不就应该这么做么?这也算是算法?我认为这不是贪心?

本题其实很简单,不会贪心算法的同学都可以做出来。

但是贪心的思考方式一定要有!

如果没有贪心的思考方式(局部最优,全局最优),很容易陷入贪心简单题凭感觉做,贪心难题直接不会做,其实这样就锻炼不了贪心的思考方式了

所以明知道是贪心简单题,也要靠贪心的思考方式来解题,这样对培养解题感觉很有帮助。

标签:下标,nums,int,步数,II,算法,跳跃,覆盖范围,贪心
From: https://blog.csdn.net/m0_62415132/article/details/141590671

相关文章

  • C++学习随笔——算法题:全排列问题
    算法题:输入一个不存在重复字符的字符串,打印出字符串中字符的全部排列组合。代码实现:#include<iostream>#include<string>#include<vector>#include<algorithm>//std::swapvoidpermute(std::stringstr,intleft,intright){if(left==right){st......
  • CSEC:香港城市大学提出SOTA曝光矫正算法 | CVPR 2024
    在光照条件不佳下捕获的图像可能同时包含过曝和欠曝。目前的方法主要集中在调整图像亮度上,这可能会加剧欠曝区域的色调失真,并且无法恢复过曝区域的准确颜色。论文提出通过学习估计和校正这种色调偏移,来增强既有过曝又有欠曝的图像。先通过基于UNet的网络推导输入图像的增亮和变暗......
  • STL所有常用算法(全网最详细,一文全掌握,建议收藏)
    目录1.分类和介绍2.遍历算法2.1for_each算法(遍历执行)2.2transform算法(搬运)3.查找算法3.1find算法(具体查找)3.2find_if算法(条件查找)3.3 adjacent_find(查找相邻重复元素)3.4 binary_search(二分查找有序序列中元素是否存在)3.5 count(统计元素出现次数)3.6 coun......
  • 主成分分析结合遗传算法优化的随机森林通用代码
    importpandasaspdfromsklearn.preprocessingimportStandardScalerfromsklearn.decompositionimportPCAfromsklearn.ensembleimportRandomForestClassifier,RandomForestRegressorfromsklearn.metricsimportaccuracy_score,mean_squared_error,mean_abso......
  • 玄学乱搞算法——模拟退火,SA
    \(\texttt{0x00:}\)前言在此之前只对模拟退火的大名有所耳闻,但并未在我的认知上激起太大的风浪,直到……在外培的一场模拟赛上,队内大佬yyc在丝毫没有思路的情况下用SA骗了70pts,赛后使得给我们上课的清华姚班老师惊掉下巴。至此,在感叹SA的神力的同时,它也进入了我的学习计......
  • 码农必看!《Hello 算法》
    码农必看!《Hello算法》动画图解、一键运行的数据结构与算法教程下载地址夸克:https://pan.quark.cn/s/12b1e0c4747e如果夸克网盘空间不足,可以参考这篇文章免费扩容20T夸克免费扩容20T本书是一份开源、免费的数据结构与算法入门教程,特别适合新手。书中包含14种编程语言......
  • Java毕设项目II基于Spring Boot的医药管理系统的设计与实现
    目录一、前言二、技术介绍三、系统实现四、论文参考五、核心代码六、源码获取全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末一、前言"在当今医疗信息化快速发展的背景下,设计......
  • 第9篇 你所不知道的IIS Express
    1.IISExpress是什么?IISExpress是为开发人员优化的轻量级、自包含版本的IIS。IISExpress使使用当前最新版本的IIS来开发和测试网站变得容易。它具有IIS7及以上的所有核心功能,以及为简化网站开发而设计的附加功能。IISExpress源于IIS7及以上,支持IIS的核心特性,但有一些关键区......
  • 004 路由算法与路径选择策略
    引言路径选择是路由器的核心功能,决定了数据包从源头到达目的地的路径。本篇博文将深入探讨各种路由算法和路径选择策略,帮助你理解路由器如何在复杂网络中进行决策。1.路由算法分类静态路由:管理员手动配置,适用于简单、稳定的网络。静态路由具有高稳定性,但不具备自动恢复......