首页 > 编程语言 >Python数据分析项目实战01_票房榜单分析和pyecharts大屏可视化

Python数据分析项目实战01_票房榜单分析和pyecharts大屏可视化

时间:2024-08-15 20:25:20浏览次数:13  
标签:01 pyecharts 票房 show color 票房榜 china data opts

一:最终大屏效果展示

由于生成了html网页只能在本地上显示,这个大屏是动态的,只能显示其中的图片。如果要分享给他人使用,就需要将html源码转为网页。

生成的html源码入口:‬​‍​‌‌​⁠​​​‌‍​​​​​‬​​​​​‬​​​​‌​​​‌‍​​​​​⁠‌‬‌​​‌Python数据分析项目实战01_票房榜单分析和pyecharts大屏可视化 - 飞书云文档 (feishu.cn)

二:背景介绍

该项目给出了2021年前国内和进口的一些电影的票房数据,分别为票房榜.xlsx和电影票房表现概览.xlsx,具体下载或观看入口:

‬​‍​‌‌​⁠​​​‌‍​​​​​‬​​​​​‬​​​​‌​​​‌‍​​​​​⁠‌‬‌​​‌Python数据分析项目实战01_票房榜单分析和pyecharts大屏可视化 - 飞书云文档 (feishu.cn)

我们可以做一些可视化分析,如利用Python中的大屏可视化pyecharts库。由此我们有以下思路:

  1. 分别对两个表进行数据清洗和整理后再合成一个表
  2. 表一:电影票房-top50
  3. 表二:国产-进口年份和电影标签分布
  4. 表三:国产电影上映首周票房表现 -Top50
  5. 表四:进口电影上映首周票房表现 -Top50
  6. 大屏整合展示

三:pyecharts可视化解题步骤

Step1:整合数据

先导入我们所需的库:

import numpy as np
import pandas as pd
from collections import Counter
from pyecharts import options as opts
from pyecharts.charts import *
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType
from pyecharts.components import Table
from pyecharts.options import ComponentTitleOpts
import datetime

再导入数据进行观察:

data = pd.read_excel("./票房榜.xlsx")
data

如图为数据概览,我们可以提取出我们准备分析的年份,并将票房转为票房/亿以便于数据可视化。

data["年份"] = data["上映日期"].apply(lambda x: str(x.split("-")[0]))
data["票房"] = data["票房"].apply(lambda x: round(x/100000000, 2))
data = data.rename(columns={"票房":"票房/亿"})

然后在处理完第一个数据表后,我们处理第二个数据表,然后将数据表二的数据添加到第一个数据表中,因为数据表1到根据票房排名的顺序对于数据可视化很重要。

pd.set_option('display.max_columns', None)   # 可以显示出数据如果所含列名过多也不被省略显示
data_haed = pd.read_excel(r"./电影票房表现概览.xlsx")
data_haed.head(1)

对两个数据进行拼接:

data_haed_all = data.merge(data_haed, how="left", on=['EnMovieID'])  
# 用电影票房表现概览.xlsx来补充票房榜.xlsx,使得电影的排名不变。
data_haed_all.head(1)

然后进行如下数据的列名清洗:

data_haed_all["首映票房"] = data_haed_all["首映票房"].apply(lambda x: round(x/100000000, 2))
data_haed_all["首周票房"] = data_haed_all["首周票房"].apply(lambda x: round(x/100000000, 2))
data_haed_all["首周末票房"] = data_haed_all["首周末票房"].apply(lambda x: round(x/100000000, 2))

data_haed_all = data_haed_all.rename(columns={"电影_x":"电影", "首映票房": "首映票房/亿", "首周票房": "首周票房/亿", "首周末票房": "首周末票房/亿"})
data_haed_all = data_haed_all.drop(labels=["EnMovieID","DBOMovieID","EFMTMovieID","电影_y","GenreMainID"],axis=1)

最终得到如下的列名:

colums = list(data_haed_all)
print(colums)

然后我们分别提取出国内和进口的数据:

data_all = data_haed_all[data_haed_all["榜单类别"] == "全部"]
data_china = data_haed_all[data_haed_all["榜单类别"] == "国产"]
data_foreign = data_haed_all[data_haed_all["榜单类别"] == "进口"]

data_cat = [data_all, data_china, data_foreign]
cat = ["全部", "国产","进口"]

Step2:表一:电影票房-top50

接下的代码较为复杂,就不逐行解释了,想具体了解的可以逐行进行阅读,其中涉及一些前端知识,比如网页渲染:

line_max = max(max(data_all['场均人次'].tolist()), max(data_all['平均票价'].tolist()))

bar_max = max(data_all['票房/亿'].tolist())

bar_all = (
    Bar(init_opts=opts.InitOpts(width="1000px", height="600px",theme='light'))  # 设置图表大小
        .add_xaxis(xaxis_data=data_all['电影'].tolist())  # x轴
        .add_yaxis(
        series_name="票房/亿",  # 柱形图系列名称
        y_axis=data_all['票房/亿'].tolist(),  # 数据
        label_opts=opts.LabelOpts(is_show=False, position='top', formatter="{c}/亿"),  # 显示数据标签
        itemstyle_opts={
            "normal": {
                "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                    offset: 0,
                    color: '#ee3f4d'
                }, {
                    offset: 1,
                    color: '#eea2a4'
                }], false)""", ),
                "opacity": 0.8,
#                 "barBorderRadius": [20, 20, 0, 0],
                'shadowBlur': 8,
                'shadowColor': 'rgba(0, 0, 0, 0.4)',
                'shadowOffsetX': 10,
                'shadowOffsetY': 10,
                'borderColor': 'rgb(220,220,220)',
                'borderWidth': 1
            }}
    )
        .extend_axis(  # 设置次坐标轴
        yaxis=opts.AxisOpts(
            name="",  # 次坐标轴名称
            type_="value",  # 次坐标手类型
            min_=-2 * line_max,  # 最小值
            max_=2 * line_max,  # 最大值
            is_show=False,  # 是否显示
            axisline_opts=opts.AxisLineOpts(is_show=False,  # y轴线不显示
                                            linestyle_opts=opts.LineStyleOpts(color='#2486b9')),  # 设置线颜色, 字体颜色也变
            axistick_opts=opts.AxisTickOpts(is_show=False),  # 刻度线不显示
            axislabel_opts=opts.LabelOpts(formatter="{value}"),  # 次坐标轴数据显示格式
        )
    )

        .set_global_opts(title_opts=opts.TitleOpts(title="电影票房 - top50",  # 标题
                                                   title_textstyle_opts=opts.TextStyleOpts(font_size=20),  # 主标题字体大小
                                                   subtitle="国产/进口",  # 次坐标轴
                                                   pos_left='center',
                                                   pos_top='0.8%'),  # 标题位置
                         legend_opts=opts.LegendOpts(is_show=True,
                                                     pos_top=50,
                                                     orient="horizontal",
                                                     ),  # 不显示图例
                         tooltip_opts=opts.TooltipOpts(
                             trigger="axis",
                             axis_pointer_type="shadow"
                         ),  # 提示框
                         xaxis_opts=opts.AxisOpts(name='',
                                                  type_='category',
                                                  axislabel_opts=opts.LabelOpts(rotate=360),
                                                  ),
                         yaxis_opts=opts.AxisOpts(type_="value",  # y轴类型
                                                  max_=bar_max,
                                                  name='票房/亿',  # y轴名称
                                                  name_location='middle',  # y轴名称位置
                                                  name_gap=70,  # y轴名称距离轴线距离
                                                  axistick_opts=opts.AxisTickOpts(is_show=False),  # 刻度线
                                                  axisline_opts=opts.AxisLineOpts(is_show=False),  # y轴线
                                                  splitline_opts=opts.SplitLineOpts(is_show=True),  # y轴网格线
                                                  axislabel_opts=opts.LabelOpts(formatter="{value}"),
                                                  ),  # 轴标签显示方式
                         datazoom_opts=opts.DataZoomOpts(is_zoom_lock=False)
                         )
)

line_all = (
    Line()
        .add_xaxis(xaxis_data=data_all['电影'].tolist())  # x轴
        .add_yaxis(
        series_name="场均人次",  # 名称
        yaxis_index=1,  # 次坐标
        is_smooth=True,  # 线条样式  , 是否设置成圆滑曲线
        y_axis=data_all['场均人次'].tolist(),
        itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                                        offset: 0,
                                        color: '#2486b9'
                                    }, {
                                        offset: 1,
                                        color: '#FF00FF'
                                    }], false)""", ),
                "opacity": 0.7,
                "barBorderRadius": [45, 45, 45, 45],
                "shadowColor": 'rgb(0, 160, 221)',
            }},
        linestyle_opts={
            'normal': {
                'width': 3,
                'shadowColor': 'rgba(0, 0, 0, 0.5)',
                'shadowBlur': 5,
                'shadowOffsetY': 10,
                'shadowOffsetX': 10,
                'curve': 0.5,
                'color': '#2486b9'
            }
        },
        label_opts=opts.LabelOpts(is_show=False),  # 显示数据标签
    )
    
    .add_yaxis(
        series_name="平均票价",  # 名称
        yaxis_index=1,  # 次坐标
        is_smooth=True,  # 线条样式  , 是否设置成圆滑曲线
        y_axis=data_all['平均票价'].tolist(),
        itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                                        offset: 0,
                                        color: '#1a6840'
                                    }, {
                                        offset: 1,
                                        color: '#66c18c'
                                    }], false)""", ),
                "opacity": 0.7,
                "barBorderRadius": [45, 45, 45, 45],
                "shadowColor": 'rgb(0, 160, 221)',
            }},
        linestyle_opts={
            'normal': {
                'width': 3,
                'shadowColor': 'rgba(0, 0, 0, 0.5)',
                'shadowBlur': 5,
                'shadowOffsetY': 10,
                'shadowOffsetX': 10,
                'curve': 0.5,
                'color': '#66c18c'
            }
        },
        label_opts=opts.LabelOpts(is_show=False),  # 显示数据标签
    )
)
bar_all.overlap(line_all)  # 图表组合

bar_all.render_notebook()

Step3:表二:国产-进口年份和电影标签分布

先计算计算上榜电影年份汇总:

data_china_year = data_china["年份"].value_counts()
data_foreigna_year = data_foreign["年份"].value_counts()

可以统计不同年份的数量分布。

然后分别计算国内和进口的上榜电影标签汇总:

tags_china = []
tag_china = data_china['作品类型'].tolist()
for t in tag_china:
    try:
        for i in t.split('/'):
            tags_china.append(i)
    except:
        continue
tags_china_pair = []
for key, value in Counter(tags_china).items():
    tags_china_pair.append([key, value])

print(tags_china_pair)
tags_foreign = []
tag_foreign = data_foreign['作品类型'].tolist()
for t in tag_foreign:
    try:
        for i in t.split('/'):
            tags_foreign.append(i)
    except:
        continue
tags_foreign_pair = []
for key, value in Counter(tags_foreign).items():
    tags_foreign_pair.append([key, value])

得到如下的类似结果:

然后利用类似于Step2得到表一的方法得到表二:

pie = (
    Pie(init_opts=opts.InitOpts(width="1000px", height="900px", theme='light'))
        .add('国产年份', [list(z) for z in zip(data_china_year.index.tolist(),
                                       data_china_year.values.tolist())],
             radius=['55', '100'],
             center=['33%', '30%']
             )
        .add('进口', [list(z) for z in zip(data_foreigna_year.index.tolist(),
                                       data_foreigna_year.values.tolist())],
             radius=['55', '100'],
             center=['75%', '30%'])
        .add('国产电影标签', tags_china_pair,
             radius=['55', '100'],
             center=['33%', '80%']
             )
        .add('进口电影标签', tags_foreign_pair,
             radius=['55', '100'],
             center=['75%', '80%']
             )
        .set_series_opts(
            label_opts=opts.LabelOpts(formatter="{b}: {c}", font_size=14),
            tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)"),
            itemstyle_opts={"normal": {
                                        'shadowBlur': 2,
                                        "borderColor": '#87CEFA',
                                        "borderWidth": 3,
                                        'shadowColor': '#87CEFA',
                                        'opacity': 1
                                    }
                           })
        .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False, pos_top='5%'),
            title_opts=[
                dict(
                    text=f'国产-进口上榜 - TOP50 - 详情分布',
                    left='center',
                    top='1%',
                    textStyle=dict(
                        color='#000',
                        fontSize=24)),
                dict(
                    text=f'国产分布',
                    left='28%',
                    top='10%',
                    textStyle=dict(
                        color='#999999',
                        fontSize=18)),
                dict(
                    text=f'进口分布',
                    left='70%',
                    top='10%',
                    textStyle=dict(
                        color='#999999',
                        fontSize=18)),
                dict(
                    text=f'国产电影标签',
                    left='28%',
                    top='55%',
                    textStyle=dict(
                        color='#999999',
                        fontSize=18)),
                dict(
                    text=f'进口电影标签',
                    left='70%',
                    top='55%',
                    textStyle=dict(
                        color='#999999',
                        fontSize=18)),
            ],
            )
)
pie.render_notebook()

Step4:表三:国产电影上映首周票房表现 -Top50

再利用我们整合得到的数据与之前类似的方法得到表三:

bar_china = (
    Bar(init_opts=opts.InitOpts(width="1200px", height="600px", theme='light')) # 设置图表大小
    .add_xaxis(xaxis_data=data_china['电影'].tolist())  # x轴
    .add_yaxis(
        series_name="首映票房/亿",  #柱形图系列名称
        stack='stack1',
        y_axis=data_china['首映票房/亿'].tolist(), # 数据
        label_opts=opts.LabelOpts(is_show=False,position='top',formatter="{c} 亿"), # 显示数据标签
        itemstyle_opts={
            "normal": {
                "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                    offset: 0,
                    color: '#126bae'
                }, {
                    offset: 1,
                    color: '#619ac3'
                }], false)""", ),
                "opacity": 0.8,
#                 "barBorderRadius": [20, 20, 0, 0],
                'shadowBlur': 4,
                'shadowColor': 'rgba(0, 0, 0, 0.3)',
                'shadowOffsetX': 5,
                'shadowOffsetY': 5,
                'borderColor': 'rgb(220,220,220)',
                'borderWidth': 1
            }}
        )
    .add_yaxis(
        series_name="首周票房/亿",  #柱形图系列名称
        stack='stack1',
        y_axis=data_china['首周票房/亿'].tolist(), # 数据
        label_opts=opts.LabelOpts(is_show=False,position='top',formatter="{c} 亿"), # 显示数据标签
        itemstyle_opts={
            "normal": {
                "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                    offset: 0,
                    color: '#ea7293'
                }, {
                    offset: 1,
                    color: '#ec8aa4'
                }], false)""", ),
                "opacity": 0.8,
#                 "barBorderRadius": [20, 20, 0, 0],
                'shadowBlur': 4,
                'shadowColor': 'rgba(0, 0, 0, 0.3)',
                'shadowOffsetX': 5,
                'shadowOffsetY': 5,
                'borderColor': 'rgb(220,220,220)',
                'borderWidth': 1
            }}
        )

    .add_yaxis(
        series_name="首周末票房/亿",  #柱形图系列名称
        stack='stack1',
        y_axis=data_china['首周末票房/亿'].tolist(), # 数据
        label_opts=opts.LabelOpts(is_show=False,position='top',formatter="{c} 亿"), # 显示数据标签
        itemstyle_opts={
            "normal": {
                "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                    offset: 0,
                    color: '#9eccab'
                }, {
                    offset: 1,
                    color: '#a4cab6'
                }], false)""", ),
                "opacity": 0.8,
#                 "barBorderRadius": [20, 20, 0, 0],
                'shadowBlur': 4,
                'shadowColor': 'rgba(0, 0, 0, 0.3)',
                'shadowOffsetX': 5,
                'shadowOffsetY': 5,
                'borderColor': 'rgb(220,220,220)',
                'borderWidth': 1
            }}
        )
    
    .reversal_axis()
    # .set_series_opts(label_opts=opts.LabelOpts(position="right"))
    .set_global_opts(title_opts=opts.TitleOpts(title="国产电影上映首周票房表现 -Top50",# 标题
                                               title_textstyle_opts=opts.TextStyleOpts(font_size=20), #主标题字体大小
                                               subtitle="", # 次坐标轴
                                               pos_left='center'),# 标题位置
                    legend_opts=opts.LegendOpts(
                                             is_show=True,
                                             pos_top=30,
                                             orient="horizontal"
                                                             ),  # 不显示图例
                    tooltip_opts=opts.TooltipOpts(
                                             trigger="axis",
                                             axis_pointer_type="shadow"
                                             ),# 提示框
                    yaxis_opts=opts.AxisOpts(name='',
                                            type_='category',                                           
                                            #    axislabel_opts=opts.LabelOpts(rotate=30),
                                               ),
                     xaxis_opts=opts.AxisOpts(type_="value", # y轴类型
                                            #   max_=5000000,
                                              name='', # y轴名称
                                              name_location='middle', # y轴名称位置
                                              name_gap=70,  # y轴名称距离轴线距离
                                              axistick_opts=opts.AxisTickOpts(is_show=False),   # 刻度线
                                              axisline_opts=opts.AxisLineOpts(is_show=False),   # y轴线
                                              splitline_opts=opts.SplitLineOpts(is_show=True),   # y轴网格线
                                              axislabel_opts=opts.LabelOpts(formatter="{value}")), # 轴标签显示方式
                     datazoom_opts=opts.DataZoomOpts(is_zoom_lock=False,
                                                    orient="vertical")
                                               )
)
bar_china.render_notebook()

Step5:表四:进口电影上映首周票房表现 -Top50

与Step4类似得到表四:

bar_foreign = (
    Bar(init_opts=opts.InitOpts(width="1200px", height="600px", theme='light')) # 设置图表大小
    .add_xaxis(xaxis_data=data_foreign['电影'].tolist())  # x轴
    .add_yaxis(
        series_name="首映票房/亿",  #柱形图系列名称
        stack='stack1',
        y_axis=data_foreign['首映票房/亿'].tolist(), # 数据
        label_opts=opts.LabelOpts(is_show=False,position='top',formatter="{c} 亿"), # 显示数据标签
        itemstyle_opts={
            "normal": {
                "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                    offset: 0,
                    color: '#126bae'
                }, {
                    offset: 1,
                    color: '#619ac3'
                }], false)""", ),
                "opacity": 0.8,
#                 "barBorderRadius": [20, 20, 0, 0],
                'shadowBlur': 4,
                'shadowColor': 'rgba(0, 0, 0, 0.3)',
                'shadowOffsetX': 5,
                'shadowOffsetY': 5,
                'borderColor': 'rgb(220,220,220)',
                'borderWidth': 1
            }}
        )
    .add_yaxis(
        series_name="首周票房/亿",  #柱形图系列名称
        stack='stack1',
        y_axis=data_foreign['首周票房/亿'].tolist(), # 数据
        label_opts=opts.LabelOpts(is_show=False,position='top',formatter="{c} 亿"), # 显示数据标签
        itemstyle_opts={
            "normal": {
                "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                    offset: 0,
                    color: '#ea7293'
                }, {
                    offset: 1,
                    color: '#ec8aa4'
                }], false)""", ),
                "opacity": 0.8,
#                 "barBorderRadius": [20, 20, 0, 0],
                'shadowBlur': 4,
                'shadowColor': 'rgba(0, 0, 0, 0.3)',
                'shadowOffsetX': 5,
                'shadowOffsetY': 5,
                'borderColor': 'rgb(220,220,220)',
                'borderWidth': 1
            }}
        )

    .add_yaxis(
        series_name="首周末票房/亿",  #柱形图系列名称
        stack='stack1',
        y_axis=data_foreign['首周末票房/亿'].tolist(), # 数据
        label_opts=opts.LabelOpts(is_show=False,position='top',formatter="{c} 亿"), # 显示数据标签
        itemstyle_opts={
            "normal": {
                "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                    offset: 0,
                    color: '#9eccab'
                }, {
                    offset: 1,
                    color: '#a4cab6'
                }], false)""", ),
                "opacity": 0.8,
#                 "barBorderRadius": [20, 20, 0, 0],
                'shadowBlur': 4,
                'shadowColor': 'rgba(0, 0, 0, 0.3)',
                'shadowOffsetX': 5,
                'shadowOffsetY': 5,
                'borderColor': 'rgb(220,220,220)',
                'borderWidth': 1
            }}
        )
    
    .reversal_axis()
    # .set_series_opts(label_opts=opts.LabelOpts(position="right"))
    .set_global_opts(title_opts=opts.TitleOpts(title="进口电影上映首周票房表现 -Top50",# 标题
                                               title_textstyle_opts=opts.TextStyleOpts(font_size=20), #主标题字体大小
                                               subtitle="", # 次坐标轴
                                               pos_left='center'),# 标题位置
                    legend_opts=opts.LegendOpts(
                                             is_show=True,
                                             pos_top=30,
                                             orient="horizontal"
                                                             ),  # 不显示图例
                    tooltip_opts=opts.TooltipOpts(
                                             trigger="axis",
                                             axis_pointer_type="shadow"
                                             ),# 提示框
                    yaxis_opts=opts.AxisOpts(name='',
                                            type_='category',                                           
                                            #    axislabel_opts=opts.LabelOpts(rotate=30),
                                               ),
                     xaxis_opts=opts.AxisOpts(type_="value", # y轴类型
                                            #   max_=5000000,
                                              name='', # y轴名称
                                              name_location='middle', # y轴名称位置
                                              name_gap=70,  # y轴名称距离轴线距离
                                              axistick_opts=opts.AxisTickOpts(is_show=False),   # 刻度线
                                              axisline_opts=opts.AxisLineOpts(is_show=False),   # y轴线
                                              splitline_opts=opts.SplitLineOpts(is_show=True),   # y轴网格线
                                              axislabel_opts=opts.LabelOpts(formatter="{value}")), # 轴标签显示方式
                     datazoom_opts=opts.DataZoomOpts(is_zoom_lock=False,
                                                    orient="vertical")
                                               )
)
bar_foreign.render_notebook()

Step6:大屏整合展示

最后到了整合四个表进行大屏可视化的最后步骤:

from pyecharts.charts import Page
page = Page(layout=Page.DraggablePageLayout, page_title="大屏展示")

page.add(bar_all,pie,bar_china,bar_foreign)
    
# 先保存到test.html 然后打开,拖拽图片自定义布局, 之后记得点击左上角“save config”对布局文件进行保存。
# 会生成一个chart_config.json的文件,这其中包含了每个图表ID对应的布局位置
page.render('test0.html')

bar_all,pie,bar_china,bar_foreign分别为我们得到的表一,表二,表三,表四。

# 然后运行下面这行代码。保存布局好的的仪表盘文件。
page.save_resize_html('test0.html', cfg_file='chart_config.json', dest='大屏可视化.html')

然后最终可以得到文章开头的大屏可视化网页。可以在本地直接查看html的渲染效果,也可以得到Html代码。

这些步骤展示了如何用Python中的pyecharts库来得到数据的大屏可视化分析。

关注我,分享更多AI,数据分析和量化金融学习。

标签:01,pyecharts,票房,show,color,票房榜,china,data,opts
From: https://blog.csdn.net/2301_80651329/article/details/141229473

相关文章

  • [lnsyoj4029/luoguP4109/HEOI2015]定价
    题意记\(x'\)为\(x\)去除后导零的值,则定义\(f(x)=2(\lfloor\log_{10}x'\rfloor+1)-[x'\equiv5\pmod{10}]\),给定区间\([L,R]\),求该区间中最小的\(f(x)\)值。sol一道贪心题,思想比较好想,我们需要使得前面的非0数字部分长度最小,且末尾尽可能为\(5\)。具体实现中,我......
  • 【NOIP2016普及组复赛模拟赛】侦察兵
    题目描述mxy沉迷于一个辣鸡游戏不可自拔。游戏地图是一个n*n的矩形,在每个单位格子上有一个数字,代表当前位置的生命体个数,作为一个侦察兵,mxy的任务是计算出她所在位置的左上角和右下角的总人数(不包括她所在的行列)。注意作为一个侦察兵,mxy是不包括在地图上的生命体个数中的......
  • P1001 A+B Problem(整活-dijstra堆优化)
    OK啊,这就是普通的\(a+b\)嘛这是一道十分淼的题目,乍一看,这不就是dijstra堆优化的模板题吗?首先,建立三个节点,两条线行,OK开始Code#include<bits/stdc++.h>usingnamespacestd;constlonglongN=99999,M=999999;typedefpair<longlong,longlong>PII;priority_......
  • 蓝桥杯2016 C/C++程序设计 B组
    抽签//X星球要派出一个5人组成的观察团前往W星。//其中://A国最多可以派出4人。//B国最多可以派出2人。//C国最多可以派出2人。//....//那么最终派往W星的观察团会有多少种国别的不同组合呢?//下面的程序解决了这个问题。//数组a[]中既是每个国家可以派出的最多的名......
  • 代码随想录算法训练营 | 动态规划 part01
    509.斐波那契数509.斐波那契数状态转移方程:F(0)=0,F(1)=1F(n)=F(n-1)+F(n-2),其中n>1递归,太多重复计算classSolution{public:intfib(intn){if(n==0||n==1){returnn;}returnfib(n-1)......
  • [rCore学习笔记 01]安装VMwareWorkStationPro
    写在前面本随笔是非常菜的菜鸡写的。如有问题请及时提出。可以联系:[email protected]:https://github.com/WindDevil(目前啥也没有下载它随便找个地方下载,如果官网下载速度过慢:官网B站微信公众号知乎各大软件站这里附上我使用的版本链接VMware-workstation-f......
  • 【问题解决】PageOffice打开word文档报错:Office运行时错误,部分系统文件可能丢失或已损
    打开wps,右上角配置和修复工具取消勾选,确定再打开,重新勾选,确定,退出重启电脑,验证。--PS:本人自测成功,有些人的机器安装有MicrosoftOffice,取消之后(不需要重新勾选)就可以了;本人机器只安装了WPS适合这种操作。......
  • 【2-sat】P5782 [POI2001] 和平委员会
    P5782[POI2001]和平委员会大意:n个集合每个集合有两个点i,i+1一共2n个点每个集合选一个点到另一个空集S里面有m个约束条件i和j不能在一起求可行的集合S思路:2-sat对ij而言建图(i,j邻居)和(j,i的邻居),邻居就是他们所属的集合的另一个点然后判断同同一个集......
  • 【2-sat】P4171 [JSOI2010] 满汉全席
    P4171[JSOI2010]满汉全席-洛谷大意:n个点m个条件形如m1,h32,满足n个条件思路:2-sat让m=0,h=1,然后转换为imjh的建图,注意傻逼题目的数字可能是多位数不能直接x[1]-'0'#include<cstdio>#include<stack>#include<iostream>#include<cstring>#include<cma......
  • P2679 [NOIP2015 提高组] 子串
    https://www.luogu.com.cn/problem/P2679只能说是,超级好的一道例题[NOIP2015提高组]子串题目背景NOIP2015Day2T2题目描述有两个仅包含小写英文字母的字符串\(A\)和\(B\)。现在要从字符串\(A\)中取出\(k\)个互不重叠的非空子串,然后把这\(k\)个子串按照其在字符......