首页 > 编程语言 >60个“特征工程”计算函数(Python代码)

60个“特征工程”计算函数(Python代码)

时间:2024-08-10 09:55:08浏览次数:13  
标签:count return Python 代码 60 np sum def mean

近期一些朋友询问我关于如何做特征工程的问题,有没有什么适合初学者的有效操作。

特征工程的问题往往需要具体问题具体分析,当然也有一些暴力的策略,可以在竞赛初赛前期可以带来较大提升,而很多竞赛往往依赖这些信息就可以拿到非常好的效果,剩余的则需要结合业务逻辑以及很多其他的技巧,此处我们将平时用得最多的聚合操作罗列在下方。

最近刚好看到一篇文章汇总了非常多的聚合函数,就摘录在下方,供许多初入竞赛的朋友参考。

聚合特征汇总

pandas自带的聚合函数

其它重要聚合函数

其它重要聚合函数&分类分别如下。

def median(x):
    return np.median(x)

def variation_coefficient(x):
    mean = np.mean(x)
    if mean != 0:
        return np.std(x) / mean
    else:
        return np.nan

def variance(x):
    return np.var(x)

def skewness(x):
    if not isinstance(x, pd.Series):
        x = pd.Series(x)
    return pd.Series.skew(x)

def kurtosis(x):
    if not isinstance(x, pd.Series):
        x = pd.Series(x)
    return pd.Series.kurtosis(x)

def standard_deviation(x):
    return np.std(x)

def large_standard_deviation(x):
    if (np.max(x)-np.min(x)) == 0:
        return np.nan
    else:
        return np.std(x)/(np.max(x)-np.min(x))

def variation_coefficient(x):
    mean = np.mean(x)
    if mean != 0:
        return np.std(x) / mean
    else:
        return np.nan

def variance_std_ratio(x):
    y = np.var(x)
    if y != 0:
        return y/np.sqrt(y)
    else:
        return np.nan

def ratio_beyond_r_sigma(x, r):
    if x.size == 0:
        return np.nan
    else:
        return np.sum(np.abs(x - np.mean(x)) > r * np.asarray(np.std(x))) / x.size

def range_ratio(x):
    mean_median_difference = np.abs(np.mean(x) - np.median(x))
    max_min_difference = np.max(x) - np.min(x)
    if max_min_difference == 0:
        return np.nan
    else:
        return mean_median_difference / max_min_difference
    
def has_duplicate_max(x):
    return np.sum(x == np.max(x)) >= 2

def has_duplicate_min(x):
    return np.sum(x == np.min(x)) >= 2

def has_duplicate(x):
    return x.size != np.unique(x).size

def count_duplicate_max(x):
    return np.sum(x == np.max(x))

def count_duplicate_min(x):
    return np.sum(x == np.min(x))

def count_duplicate(x):
    return x.size - np.unique(x).size

def sum_values(x):
    if len(x) == 0:
        return 0
    return np.sum(x)

def log_return(list_stock_prices):
    return np.log(list_stock_prices).diff() 

def realized_volatility(series):
    return np.sqrt(np.sum(series**2))

def realized_abs_skew(series):
    return np.power(np.abs(np.sum(series**3)),1/3)

def realized_skew(series):
    return np.sign(np.sum(series**3))*np.power(np.abs(np.sum(series**3)),1/3)

def realized_vol_skew(series):
    return np.power(np.abs(np.sum(series**6)),1/6)

def realized_quarticity(series):
    return np.power(np.sum(series**4),1/4)

def count_unique(series):
    return len(np.unique(series))

def count(series):
    return series.size

#drawdons functions are mine
def maximum_drawdown(series):
    series = np.asarray(series)
    if len(series)<2:
        return 0
    k = series[np.argmax(np.maximum.accumulate(series) - series)]
    i = np.argmax(np.maximum.accumulate(series) - series)
    if len(series[:i])<1:
        return np.NaN
    else:
        j = np.max(series[:i])
    return j-k

def maximum_drawup(series):
    series = np.asarray(series)
    if len(series)<2:
        return 0
    

    series = - series
    k = series[np.argmax(np.maximum.accumulate(series) - series)]
    i = np.argmax(np.maximum.accumulate(series) - series)
    if len(series[:i])<1:
        return np.NaN
    else:
        j = np.max(series[:i])
    return j-k

def drawdown_duration(series):
    series = np.asarray(series)
    if len(series)<2:
        return 0

    k = np.argmax(np.maximum.accumulate(series) - series)
    i = np.argmax(np.maximum.accumulate(series) - series)
    if len(series[:i]) == 0:
        j=k
    else:
        j = np.argmax(series[:i])
    return k-j

def drawup_duration(series):
    series = np.asarray(series)
    if len(series)<2:
        return 0

    series=-series
    k = np.argmax(np.maximum.accumulate(series) - series)
    i = np.argmax(np.maximum.accumulate(series) - series)
    if len(series[:i]) == 0:
        j=k
    else:
        j = np.argmax(series[:i])
    return k-j

def max_over_min(series):
    if len(series)<2:
        return 0
    if np.min(series) == 0:
        return np.nan
    return np.max(series)/np.min(series)

def mean_n_absolute_max(x, number_of_maxima = 1):
    """ Calculates the arithmetic mean of the n absolute maximum values of the time series."""
    assert (
        number_of_maxima > 0
    ), f" number_of_maxima={number_of_maxima} which is not greater than 1"

    n_absolute_maximum_values = np.sort(np.absolute(x))[-number_of_maxima:]

    return np.mean(n_absolute_maximum_values) if len(x) > number_of_maxima else np.NaN


def count_above(x, t):
    if len(x)==0:
        return np.nan
    else:
        return np.sum(x >= t) / len(x)

def count_below(x, t):
    if len(x)==0:
        return np.nan
    else:
        return np.sum(x <= t) / len(x)

#number of valleys = number_peaks(-x, n)
def number_peaks(x, n):
    """
    Calculates the number of peaks of at least support n in the time series x. A peak of support n is defined as a
    subsequence of x where a value occurs, which is bigger than its n neighbours to the left and to the right.
    """
    x_reduced = x[n:-n]

    res = None
    for i in range(1, n + 1):
        result_first = x_reduced > _roll(x, i)[n:-n]

        if res is None:
            res = result_first
        else:
            res &= result_first

        res &= x_reduced > _roll(x, -i)[n:-n]
    return np.sum(res)

def mean_abs_change(x):
    return np.mean(np.abs(np.diff(x)))

def mean_change(x):
    x = np.asarray(x)
    return (x[-1] - x[0]) / (len(x) - 1) if len(x) > 1 else np.NaN

def mean_second_derivative_central(x):
    x = np.asarray(x)
    return (x[-1] - x[-2] - x[1] + x[0]) / (2 * (len(x) - 2)) if len(x) > 2 else np.NaN


def root_mean_square(x):
    return np.sqrt(np.mean(np.square(x))) if len(x) > 0 else np.NaN

def absolute_sum_of_changes(x):
    return np.sum(np.abs(np.diff(x)))

def longest_strike_below_mean(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    return np.max(_get_length_sequences_where(x < np.mean(x))) if x.size > 0 else 0

def longest_strike_above_mean(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    return np.max(_get_length_sequences_where(x > np.mean(x))) if x.size > 0 else 0

def count_above_mean(x):
    m = np.mean(x)
    return np.where(x > m)[0].size

def count_below_mean(x):
    m = np.mean(x)
    return np.where(x < m)[0].size

def last_location_of_maximum(x):
    x = np.asarray(x)
    return 1.0 - np.argmax(x[::-1]) / len(x) if len(x) > 0 else np.NaN

def first_location_of_maximum(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    return np.argmax(x) / len(x) if len(x) > 0 else np.NaN

def last_location_of_minimum(x):
    x = np.asarray(x)
    return 1.0 - np.argmin(x[::-1]) / len(x) if len(x) > 0 else np.NaN

def first_location_of_minimum(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    return np.argmin(x) / len(x) if len(x) > 0 else np.NaN

# Test non-consecutive non-reoccuring values ?
def percentage_of_reoccurring_values_to_all_values(x):
    if len(x) == 0:
        return np.nan
    unique, counts = np.unique(x, return_counts=True)
    if counts.shape[0] == 0:
        return 0
    return np.sum(counts > 1) / float(counts.shape[0])

def percentage_of_reoccurring_datapoints_to_all_datapoints(x):
    if len(x) == 0:
        return np.nan
    if not isinstance(x, pd.Series):
        x = pd.Series(x)
    value_counts = x.value_counts()
    reoccuring_values = value_counts[value_counts > 1].sum()
    if np.isnan(reoccuring_values):
        return 0

    return reoccuring_values / x.size


def sum_of_reoccurring_values(x):
    unique, counts = np.unique(x, return_counts=True)
    counts[counts < 2] = 0
    counts[counts > 1] = 1
    return np.sum(counts * unique)

def sum_of_reoccurring_data_points(x):
    unique, counts = np.unique(x, return_counts=True)
    counts[counts < 2] = 0
    return np.sum(counts * unique)

def ratio_value_number_to_time_series_length(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    if x.size == 0:
        return np.nan

    return np.unique(x).size / x.size

def abs_energy(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    return np.dot(x, x)

def quantile(x, q):
    if len(x) == 0:
        return np.NaN
    return np.quantile(x, q)

# crossing the mean ? other levels ? 
def number_crossing_m(x, m):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    # From https://stackoverflow.com/questions/3843017/efficiently-detect-sign-changes-in-python
    positive = x > m
    return np.where(np.diff(positive))[0].size

def absolute_maximum(x):
    return np.max(np.absolute(x)) if len(x) > 0 else np.NaN

def value_count(x, value):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    if np.isnan(value):
        return np.isnan(x).sum()
    else:
        return x[x == value].size

def range_count(x, min, max):
    return np.sum((x >= min) & (x < max))

def mean_diff(x):
    return np.nanmean(np.diff(x.values))
base_stats = ['mean','sum','size','count','std','first','last','min','max',median,skewness,kurtosis]
higher_order_stats = [abs_energy,root_mean_square,sum_values,realized_volatility,realized_abs_skew,realized_skew,realized_vol_skew,realized_quarticity]
additional_quantiles = [quantile_01,quantile_025,quantile_075,quantile_09]
other_min_max = [absolute_maximum,max_over_min]
min_max_positions = [last_location_of_maximum,first_location_of_maximum,last_location_of_minimum,first_location_of_minimum]
peaks = [number_peaks_2, mean_n_absolute_max_2, number_peaks_5, mean_n_absolute_max_5, number_peaks_10, mean_n_absolute_max_10]
counts = [count_unique,count,count_above_0,count_below_0,value_count_0,count_near_0]
reoccuring_values = [count_above_mean,count_below_mean,percentage_of_reoccurring_values_to_all_values,percentage_of_reoccurring_datapoints_to_all_datapoints,sum_of_reoccurring_values,sum_of_reoccurring_data_points,ratio_value_number_to_time_series_length]
count_duplicate = [count_duplicate,count_duplicate_min,count_duplicate_max]
variations = [mean_diff,mean_abs_change,mean_change,mean_second_derivative_central,absolute_sum_of_changes,number_crossing_0]
ranges = [variance_std_ratio,ratio_beyond_01_sigma,ratio_beyond_02_sigma,ratio_beyond_03_sigma,large_standard_deviation,range_ratio]

 读者福利:对Python感兴趣的童鞋,为此小编专门给大家准备好了Python全套的学习资料《完整版的Python的全套学习资料》(安全链接,放心点击)

Python所有学习路线

视频教程

标签:count,return,Python,代码,60,np,sum,def,mean
From: https://blog.csdn.net/2401_86168842/article/details/141059352

相关文章

  • 太强了,这几个Python效率工具非常好用!
    为了提高效率,我们在平时工作中常会用到一些Python的效率工具,Python作为比较老的编程语言,它可以实现日常工作的各种自动化。为了更便利的开发项目,这里给大家推荐几个Python的效率工具。1、Pandas-用于数据分析Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(......
  • 600. 不含连续1的非负整数
    600.不含连续1的非负整数题目链接:600.不含连续1的非负整数代码如下://参考链接:https://leetcode.cn/problems/non-negative-integers-without-consecutive-ones/solutions/1750941/by-endlesscheng-1eguclassSolution{public: intfindIntegers(intn) { vect......
  • [python] Python并行计算库Joblib使用指北
    Joblib是用于高效并行计算的Python开源库,其提供了简单易用的内存映射和并行计算的工具,以将任务分发到多个工作进程中。Joblib库特别适合用于需要进行重复计算或大规模数据处理的任务。Joblib库的官方仓库见:joblib,官方文档见:joblib-doc。Jolib库安装代码如下:pipinstalljoblib......
  • 「代码随想录算法训练营」第三十四天 | 动态规划 part7
    198.打家劫舍题目链接:https://leetcode.cn/problems/house-robber/文章讲解:https://programmercarl.com/0198.打家劫舍.html题目难度:中等视频讲解:https://www.bilibili.com/video/BV1Te411N7SX题目状态:有点思路但不全。思路:这次的dp[i]数组表示在到第i个房间中时最多的......
  • 《低代码开发:是机遇也是挑战》
    如何看待“低代码”开发平台的兴起?近年来,“低代码”开发平台如雨后春笋般涌现,承诺让非专业人士也能快速构建应用程序。这种新兴技术正在挑战传统软件开发模式,引发了IT行业的广泛讨论。低代码平台是提高效率的利器,还是降低了编程门槛导致质量下降?它会改变开发者的工作方式吗?让......
  • 直播软件开发,实现模糊搜索的代码分析
    直播软件开发,实现模糊搜索的代码分析核心思想:将用户输入的字符串进行拆分去与数组的每一项做匹配,把符合的保存下来即可。要进行拆分这里就需要用到正则表达式实现//其余代码同上handleSearch(queryString){letqueryStringArr=queryString.split("");letst......
  • PEP 8 – Python 代码风格指南中文版(六)
    编程建议(1)我们应该以一种不会对其他Python实现(比如PyPy、Jython、IronPython、Cython、Psyco等)造成不利影响的方式来编写。例如,不要依赖CPython中对于a+=b或a=a+b形式的语句在原地字符串连接上的高效实现。这种优化即使在CPython中也是脆弱的(它仅对某些类型有效),并且......
  • 【Python】Python中一些有趣的用法
    Python是一种非常灵活和强大的编程语言,它有很多有趣的用法,以下是一些例子:一行代码实现FizzBuzz:print('\n'.join(['FizzBuzz'[i%3*4:i%5*8:-1]orstr(i)foriinrange(1,101)]))使用列表推导式生成斐波那契数列:fib=[0,1][fib.append(fib[-2]+fib[-1])for_......
  • 【人工智能】常用的人工智能框架、模型、使用方法、应用场景以及代码实例的概述
    人工智能(AI)领域涉及众多框架和模型,这些框架和模型为开发人员提供了强大的工具,以构建和训练各种AI应用。以下是一些常用的人工智能框架、模型、使用方法、应用场景以及代码实例的概述。一、常用框架1.TensorFlow简介:TensorFlow是一个由谷歌开发的开源深度学习框架,支持大规模......
  • 【待做】ThinkPHP系统常被挂马的代码
    https://mp.weixin.qq.com/s/fn_v0ydNSJ7g2nhujv621gThinkPHP系统常被挂马的代码原创秋刀鱼儿啊php学习交流吧2024年07月31日22:58广东在使用ThinkPHP框架(无论是版本3、5还是6)进行开发时,也有一些常见的代码结构和实践,如果不当,可能会导致安全漏洞,从而容易被攻击者利用......