首页 > 编程语言 >2024 | 大模型算法工程师相关面试题汇总及答案解析

2024 | 大模型算法工程师相关面试题汇总及答案解析

时间:2024-07-24 18:59:06浏览次数:18  
标签:面试题 训练 LLMs 模型 微调 汇总 LangChain 2024

前言

在准备大模型的面试时,我们需要对模型的基础理论、进阶应用、微调策略、以及特定技术如LangChain、参数高效微调(PEFT)等有深入的理解。

这里给大家整理了一份详细的面试题,帮助大家提前进行面试复习,同时对自己的技术进行查漏补缺。

一、大模型基础面试题

  1. 目前主流的开源模型体系有哪些?
  2. prefix LM 和 causal LM 区别是什么?
  3. 涌现能力是啥原因?
  4. 大模型LLM的架构介绍?

二、大模型进阶面试题

  1. llama 输入句子长度理论上可以无限长吗?
  2. 什么是 LLMs 复读机问题?
  3. 为什么会出现 LLMs 复读机问题?
  4. 如何缓解 LLMs 复读机问题?
  5. LLMs 复读机问题
  6. llama 系列问题
  7. 什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?
  8. 各个专业领域是否需要各自的大模型来服务?
  9. 如何让大模型处理更长的文本?

三、大模型微调面试题

  1. 如果想要在某个模型基础上做全参数微调,究竟需要多少显存?
  2. 为什么SFT之后感觉LLM傻了?
  3. SFT 指令微调数据 如何构建?
  4. 领域模型Continue PreTrain 数据选取?
  5. 领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?
  6. 领域模型Continue PreTrain ,如何 让模型在预训练过程中就学习到更多的知识?
  7. 进行SFT操作的时候,基座模型选用Chat还是Base?
  8. 领域模型微调 指令&数据输入格式 要求?
  9. 领域模型微调 领域评测集 构建?
  10. 领域模型词表扩增是不是有必要的?
  11. 如何训练自己的大模型?
  12. 训练中文大模型有啥经验?
  13. 指令微调的好处?
  14. 预训练和微调哪个阶段注入知识的?
  15. 想让模型学习某个领域或行业的知识,是应该预训练还是应该微调?
  16. 多轮对话任务如何微调模型?
  17. 微调后的模型出现能力劣化,灾难性遗忘是怎么回事?
  18. 微调模型需要多大显存?
  19. 大模型LLM进行SFT操作的时候在学习什么?
  20. 预训练和SFT操作有什么不同
  21. 样本量规模增大,训练出现OOM错
  22. 大模型LLM进行SFT 如何对样本进行优化?
  23. 模型参数迭代实验

有需要全套的AI大模型面试题及答案解析资料的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

四、大模型langchain面试题

  1. 基于LLM+向量库的文档对话 基础面
  2. 基于LLM+向量库的文档对话 优化面
  3. 基于LLM+向量库的文档对话 工程示例面
  4. LLMs 存在模型幻觉问题,请问如何处理?
  5. 基于LLM+向量库的文档对话 思路是怎么样?
  6. 基于LLM+向量库的文档对话 核心技术是什么?
  7. 基于LLM+向量库的文档对话 prompt 模板 如何构建?
  8. 痛点1:文档切分粒度不好把控,既担心噪声太多又担心语义信息丢失
  9. 痛点2:在基于垂直领域 表现不佳
  10. 痛点3:langchain 内置 问答分句效果不佳问题
  11. 痛点4:如何 尽可能召回与query相关的Document 问题
  12. 痛点5:如何让LLM基于query和context得到高质量的response
  13. 避坑记录
  14. 本地知识库问答系统(Langchain-chatGLM)
  15. 什么是 LangChain?
  16. LangChain 包含哪些 核心概念?
  17. 什么是 LangChain Agent?
  18. 如何使用 LangChain ?
  19. LangChain 支持哪些功能?
  20. 什么是 LangChain model?
  21. LangChain 包含哪些特点?
  22. LangChain 如何使用?
  23. LangChain 存在哪些问题及方法方案?
  24. LangChain 替代方案?
  25. LangChain 中 Components and Chains 是什么?
  26. LangChain 中 Prompt Templates and Values 是什么?
  27. LangChain 中 Example Selectors 是什么?
  28. LangChain 中 Output Parsers 是什么?
  29. LangChain 中 Indexes and Retrievers 是什么?
  30. LangChain 中 Chat Message History 是什么?
  31. LangChain 中 Agents and Toolkits 是什么?
  32. LangChain 如何调用 LLMs 生成回复?
  33. LangChain 如何修改 提示模板?
  34. LangChain 如何链接多个组件处理一个特定的下游任务?
  35. LangChain 如何Embedding & vector store?
  36. LangChain 低效的令牌使用问题
  37. LangChain 文档的问题
  38. LangChain 太多概念容易混淆,过多的“辅助”函数问题
  39. LangChain 行为不一致并且隐藏细节问题
  40. LangChain 缺乏标准的可互操作数据类型问题

五、大模型参数高效微调(PEFT) 面试题

  1. 什么是 LoRA?
  2. LoRA 的思路是什么?
  3. LoRA 的特点是什么?
  4. QLoRA 的思路是怎么样的?
  5. QLoRA 的特点是什么?
  6. AdaLoRA 的思路是怎么样的?
  7. LoRA权重是否可以合入原模型?
  8. ChatGLM-6B LoRA后的权重多大?
  9. LoRA 微调优点是什么?
  10. LoRA微调方法为啥能加速训练?
  11. 如何在已有LoRA模型上继续训练?
  12. 为什么需要 提示学习(Prompting)?
  13. 什么是 提示学习(Prompting)?
  14. 提示学习(Prompting) 有什么优点?
  15. 提示学习(Prompting)有哪些方法,能不能稍微介绍一下它们间?
  16. 为什么需要 P-tuning v2?
  17. 为什么需要 P-tuning?
  18. 为什么需要 指示微调(Prompt-tuning)?
  19. 指示微调(Prompt-tuning)与 Prefix-tuning 区别 是什么?
  20. 指示微调(Prompt-tuning)与 fine-tuning 区别 是什么?
  21. 为什么需要 前缀微调(Prefix-tuning)?
  22. 为什么 需要 适配器微调(Adapter-tuning)?
  23. 微调方法是啥?如何微调?
  24. 为什么需要 PEFT?
  25. 介绍一下 PEFT?
  26. PEFT 有什么优点?
  27. 微调方法批处理大小模式GPU显存速度?
  28. Peft 和 全量微调区别?
  29. 多种不同的高效微调方法对比
  30. 当前高效微调技术存在的一些问题
  31. 高效微调技术最佳实践
  32. PEFT 存在问题?
  33. 能不能总结一下各种参数高效微调方法?
  34. 大模型(LLMs)参数高效微调(PEFT) 面
  35. 适配器微调(Adapter-tuning)篇
  36. 提示学习(Prompting)

六、大模型推理面试题

  1. 为什么大模型推理时显存涨的那么多还一直占着?
  2. 大模型在gpu和cpu上推理速度如何?
  3. 推理速度上,int8和fp16比起来怎么样?
  4. 大模型有推理能力吗?
  5. 大模型生成时的参数怎么设置?
  6. 有哪些省内存的大语言模型训练/微调/推理方法?
  7. 如何让大模型输出合规化
  8. 应用模式变更

七、大模型评测面试题

  1. 大模型怎么评测?
  2. 大模型的honest原则是如何实现的?
  3. 模型如何判断回答的知识是训练过的已知的知识,怎么训练这种能力?

八、大模型强化学习面试题

  1. 奖励模型需要和基础模型一致吗?
  2. RLHF 在实践过程中存在哪些不足?
  3. 如何解决 人工产生的偏好数据集成本较高,很难量产问题?
  4. 如何解决三个阶段的训练(SFT->RM->PPO)过程较长,更新迭代较慢问题?
  5. 如何解决 PPO 的训练过程同时存在4个模型(2训练,2推理),对计算资源的要求较高 问题?

九、大模型训练集面试题

  1. SFT(有监督微调)的数据集格式?
  2. RM(奖励模型)的数据格式?
  3. PPO(强化学习)的数据格式?
  4. 找数据集哪里找?
  5. 微调需要多少条数据?
  6. 有哪些大模型的训练集?
  7. 进行领域大模型预训练应用哪些数据集比较好?
  8. 大模型(LLMs)显存问题面
  9. 大模型(LLMs)分布式训练面

有需要全套的AI大模型面试题及答案解析资料的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

十、大模型Agent 面试题

  1. 如何给LLM注入领域知识?
  2. 如果想要快速体验各种模型,该怎么办?

十一、Token及模型参数准备篇

  1. 预训练数据 Token 重复 是否影响 模型性能?
  2. SFT需要训练Token数?

十二、大模型位置编码篇

  1. 什么是 长度外推问题?
  2. 长度外推问题 的 解决方法 有哪些?
  3. 旋转位置编码 RoPE 思路是什么?
  4. 推导一下 旋转位置编码 RoPE ?
  5. 旋转位置编码 RoPE 有什么优点?
  6. 旋转位置编码 RoPE 被哪些 LLMs 应用?
  7. 什么是位置编码?
  8. 什么是绝对位置编码?
  9. 什么是相对位置编码?

十三、大模型 Tokenizer 篇

  1. Byte-Pair Encoding(BPE) 如何构建词典?
  2. WordPiece 与 BPE 异同点是什么?
  3. 简单介绍一下 SentencePiece 思路?
  4. 举例 介绍一下 不同 大模型LLMs 的分词方式?
  5. 介绍一下 不同 大模型LLMs 的分词方式 的区别?

十四、Layer Normalization 篇

  1. LLMs 各模型分别用了 哪种 Layer normalization?
  2. LN 在 LLMs 中的不同位置 有什么区别么?如果有,能介绍一下区别么?
  3. Deep Norm 有什么优点?
  4. Layer Norm 的计算公式写一下?
  5. RMS Norm 的计算公式写一下?
  6. RMS Norm 相比于 Layer Norm 有什么特点?
  7. Deep Norm 思路?
  8. 写一下 Deep Norm 代码实现?
  9. Layer normalization-方法篇
  10. Layer normalization-位置篇
  11. Layer normalization 对比篇

十五、大模型激活函数篇

  1. 介绍一下 FFN 块 计算公式?
  2. 介绍一下 GeLU 计算公式?
  3. 介绍一下 Swish 计算公式?
  4. 介绍一下 使用 GLU 线性门控单元的 FFN 块 计算公式?
  5. 介绍一下 使用 GeLU 的 GLU 块 计算公式?
  6. 介绍一下 使用 Swish 的 GLU 块 计算公式?
  7. 各LLMs 都使用哪种激活函数?

有需要全套的AI大模型面试题及答案解析资料的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

标签:面试题,训练,LLMs,模型,微调,汇总,LangChain,2024
From: https://blog.csdn.net/Androiddddd/article/details/140644928

相关文章

  • 坐牢第十六天 20240724
    笔记1.二叉树的补充1.1二叉树的创建shu.h​​​​​​​​​​#ifndefSHU_H#defineSHU_H#include<myhead.h>typedefchardatatype;//定义节点类型typedefstructNode{datatypedata;//数据域structNode*L;//左孩子指针structNode*R;//右孩子指......
  • 坐牢第十五天 20240723
    一.笔记1.栈的补充 链式栈1>链式存储的栈,称为链式栈2>对于单链表而言,我们可以使用,使用头插头删完成一个栈,或者尾插尾删完成链式栈3>头插头删:链表的头部就是栈顶,链表的尾部就是栈底(常用)4>尾插尾删:链表的尾部就是栈顶,链表的头部就是栈底2.队列2.1队列介绍1>队列......
  • 2024年全国职业院校(中职组)技能大赛(ZZ052大数据应用与服务)持续更新中!
    2024年职业院校中职组ZZ052大数据应用与服务赛项赛题第01套【子任务一:基础环境准备】##模块一:平台搭建与运维(一)任务一:大数据平台搭建本模块需要使用root用户完成相关配置;所有组件均在/root/software目录下。1.子任务一:基础环境准备master、slave1、slave2......
  • Linux 必备基础知识与常用命令大汇总
    这是我整理的关于Linux基础知识的笔记,主要为了方便在长期不用Linux的情况下,突然需要使用时可以快速查找。我最初有些犹豫是否应该写成文章,但我认为对于处于相似境遇的人来说,能够方便地复制和使用这些知识会很有帮助,所以决定将其分享出来。虽然MacOS不是Linux,而是BSD系系统,但我......
  • 20240724【省选】模拟
    挂了四分,掉了一名,不过这也说明我的实力就只有这点,根本不够,果然以后还是直接【数据删除】得了。T1其实就是个树剖,每个点维护左右子树的最大深度以及左右子树内的最大答案,然后就…………没了?淦,也是实现问题,应该想到的。然后就是修改边权是改成\(w-a_p\),\(a_i\)是记录下来的\(i......
  • 一文说透ConcurrentHashMap及大厂面试题
    23年毕业半年被裁后,一个月斩获大厂offer,“跟着周哥走,offer手里有”。文中有周哥50+场面试总结出的必会面试题。本期说一下ConcurretHashmap及相关知识点的面试题及答案。注:接下来的内容来自本人整理的面试秘籍。点击此处,免费获取面试秘籍jdk1.7中和jdk1.8中ConcurretH......
  • 前端笔试全攻略:30道经典面试题详解
    引言前端开发是一个充满挑战与机遇的领域,随着Web技术的不断发展,前端工程师需要掌握的知识体系也在不断扩展。无论是刚入门的新手还是资深开发者,在求职过程中都会面临各种技术笔试。本文将为你提供30道常见的前端笔试题及其详尽解答,帮助你全面备战前端面试,提升你的前端技能。......
  • 学习pcie—20240724
    因为前一段时间看了xdma的IP核手册,发现只看xdma看不太懂,不清楚pcie的传输的流程,不了解报文格式,所以看看pcie手册,主要关注发送接收时序首先是pcieIP核与xdmaIP核的区别:IntegratedBlockforPCIExpress:7SeriesIntegratedBlockforPCIExpress是最基础的PCIeIP,实现的是......
  • 2024 牛客多校 3
    https://ac.nowcoder.com/acm/contest/81598睡到十点多起床,吃完早饭开打。。。下午倒是不困了,脑子还是不转a有个显然的贪心,没办法加速模拟,1WA1T后给zsy了。这种前期题没秒掉的话还是趁早丢出去吧h随机数据本地1.4s,牛客十连重测,以为卡卡常就行了,最后也没过。看榜很早......
  • 中望CAD 机械 v2024 解锁版下载与安装教程 (CAD三维制图)
    前言中望CAD机械版是一款国产CAD制图软件,专为机械设计而打造。中望CAD机械版2024中文版拥有丰富的标准零件图库,提供绘图标准规范,并支持定制化需求。其智能注释功能更是一大亮点,通过一个命令即可完成80%的标注工作,极大提高了绘图效率。一、下载地址下载链接:中望CAD机械......