首页 > 编程语言 >P 算法与 K 算法

P 算法与 K 算法

时间:2022-10-21 19:26:41浏览次数:68  
标签:int graph 算法 edge new public

P 算法与 K 算法

作者:Grey

原文地址:

博客园:P 算法与 K 算法

CSDN:P 算法与 K 算法

说明

P 算法和 K 算法主要用来解决最小生成树问题,即:不破坏连通性删掉某些边,使得整体的权重最小。

测评链接:牛客-最小生成树

K 算法

K 算法使用的核心数据结构是并查集,然后将边权值排序。

1)总是从权值最小的边开始考虑,依次考察权值依次变大的边

2)当前的边要么进入最小生成树的集合,要么丢弃

3)如果当前的边进入最小生成树的集合中不会形成环,就要当前边

4)如果当前的边进入最小生成树的集合中会形成环,就不要当前边

5)考察完所有边之后,最小生成树的集合也得到了

边存在小根堆里面,保证每次弹出的都是权重最小的值

点存在并查集中,每次加入一个边,就把两个边的点 union

完整代码如下



import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;


public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        int m = in.nextInt();
        int[][] graph = new int[m][3];
        for (int i = 0; i < m; i++) {
            // from
            graph[i][0] = in.nextInt();
            // to
            graph[i][1] = in.nextInt();
            // weight
            graph[i][2] = in.nextInt();
        }
        System.out.println(k(graph, n));
        in.close();
    }

    // k算法生成最小生成树
    public static int k(int[][] graph, int n) {
        UnionFind uf = new UnionFind(n);
        Arrays.sort(graph, Comparator.comparingInt(o -> o[2]));
        int ans = 0;
        for (int[] edge : graph) {
            if (!uf.same(edge[0], edge[1])) {
                uf.union(edge[0], edge[1]);
                ans += edge[2];
            }
        }
        return ans;
    }

    public static class UnionFind {
        private final int[] parent;
        private final int[] size;
        private final int[] help;

        public UnionFind(int n) {
            parent = new int[n + 1];
            size = new int[n + 1];
            help = new int[n + 1];
            for (int i = 1; i < n; i++) {
                parent[i] = i;
                size[i] = 1;
            }
        }

        public boolean same(int a, int b) {
            return find(a) == find(b);
        }

        private int find(int a) {
            int index = 0;
            while (a != parent[a]) {
                help[index++] = a;
                a = parent[a];
            }
            index--;
            while (index > 0) {
                parent[help[index--]] = a;
            }
            return a;
        }

        public void union(int a, int b) {
            int f1 = find(a);
            int f2 = find(b);
            if (f1 != f2) {
                int size1 = size[f1];
                int size2 = size[f2];
                if (size1 > size2) {
                    parent[f2] = f1;
                    size[f2] = 0;
                    size[f1] = size1 + size2;
                } else {
                    parent[f1] = f2;
                    size[f1] = 0;
                    size[f2] = size1 + size2;
                }
            }
        }
    }
}

P 算法

1)可以从任意节点出发来寻找最小生成树

2)某个点加入到被选取的点中后,解锁这个点出发的所有新的边

3)在所有解锁的边中选最小的边,然后看看这个边会不会形成环

4)如果会,不要当前边,继续考察剩下解锁的边中最小的边,重复3)

5)如果不会,要当前边,将该边的指向点加入到被选取的点中,重复2)

6)当所有点都被选取,最小生成树就得到了

完整代码如下

import java.util.*;

public class Main {

    public static Set<Edge> P(Graph graph) {
        // 解锁的边进入小根堆
        PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(Comparator.comparingInt(o -> o.weight));

        // 哪些点被解锁出来了
        HashSet<Node> nodeSet = new HashSet<>();
        Set<Edge> result = new HashSet<>(); // 依次挑选的的边在result里
        for (Node node : graph.nodes.values()) { // 随便挑了一个点
            // node 是开始点
            if (!nodeSet.contains(node)) {
                nodeSet.add(node);
                for (Edge edge : node.edges) { // 由一个点,解锁所有相连的边
                    priorityQueue.add(edge);
                }
                while (!priorityQueue.isEmpty()) {
                    Edge edge = priorityQueue.poll(); // 弹出解锁的边中,最小的边
                    Node toNode = edge.to; // 可能的一个新的点
                    if (!nodeSet.contains(toNode)) { // 不含有的时候,就是新的点
                        nodeSet.add(toNode);
                        result.add(edge);
                        for (Edge nextEdge : toNode.edges) {
                            priorityQueue.add(nextEdge);
                        }
                    }
                }
            }
            // 如果有森林,就不能break,如果没有森林,就可以break
            //break;
        }
        return result;
    }

    public static class Graph {
        public HashMap<Integer, Node> nodes;
        public HashSet<Edge> edges;

        public Graph(int n) {
            nodes = new HashMap<>();
            edges = new HashSet<>(n);
        }
    }

    public static class Node {
        public int value;
        public int in;
        public int out;
        public ArrayList<Node> nexts;
        public ArrayList<Edge> edges;

        public Node(int value) {
            this.value = value;
            in = 0;
            out = 0;
            nexts = new ArrayList<>();
            edges = new ArrayList<>();
        }
    }

    public static class Edge {
        public int weight;
        public Node from;
        public Node to;

        public Edge(int weight, Node from, Node to) {
            this.weight = weight;
            this.from = from;
            this.to = to;
        }
    }

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        int m = in.nextInt();
        Graph graph = new Graph(n);
        for (int i = 0; i < m; i++) {
            int from = in.nextInt();
            int to = in.nextInt();
            int weight = in.nextInt();
            if (!graph.nodes.containsKey(from)) {
                graph.nodes.put(from, new Node(from));
            }
            if (!graph.nodes.containsKey(to)) {
                graph.nodes.put(to, new Node(to));
            }
            Node fromNode = graph.nodes.get(from);
            Node toNode = graph.nodes.get(to);
            Edge fromToEdge = new Edge(weight, fromNode, toNode);
            Edge toFromEdge = new Edge(weight, toNode, fromNode);
            fromNode.nexts.add(toNode);
            fromNode.out++;
            fromNode.in++;
            toNode.out++;
            toNode.in++;
            fromNode.edges.add(fromToEdge);
            toNode.edges.add(toFromEdge);
            graph.edges.add(fromToEdge);
            graph.edges.add(toFromEdge);
        }
        Set<Edge> result = P(graph);

        int sum = 0;
        for (Edge edge : result) {
            sum += edge.weight;
        }
        System.out.println(sum);
        in.close();
    }
}

更多

算法和数据结构笔记

参考资料

算法和数据结构体系班-左程云

标签:int,graph,算法,edge,new,public
From: https://www.cnblogs.com/greyzeng/p/16814543.html

相关文章