题意:
code:
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using u64 = unsigned long long;
using PII = pair<i64, i64>;
const int inf = 0x3f3f3f3f;
const i64 INF = 0x3f3f3f3f3f3f3f3f;
#define Z cout << "\n"
#define lb lower_bound
#define ub upper_bound
#define D(x) cerr << #x << ": " << (x) << "\n"
#define DV(v) cerr<<#v<<": ";for(int i=0;i<(v).size();i++)cerr<<((v)[i])<<",";cerr<<"\n"
#if 1
#define int i64
#endif
namespace lazyseg {
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int) (n)) x++;
return x;
}
template <class S,
S(*op)(S, S),
S(*e)(),
class F,
S(*mapping)(F, S),
F(*composition)(F, F),
F(*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S query(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_query() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool(*g)(S)> int max_right(int l) {
return max_right(l, [] (S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool(*g)(S)> int min_left(int r) {
return min_left(r, [] (S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
}
using namespace lazyseg;
struct S {
int sum, cnt, len;
pair<i64, i64> mn;
};
struct F {
int add;
};
S op(S l, S r) { return S{ l.sum + r.sum, l.cnt + r.cnt,l.len + r.len, min(l.mn, r.mn) }; }
S e() { return S{ 0, 0, 1,{INF, 0} }; }
S mapping(F f, S x) { return { x.sum + x.cnt * f.add, x.cnt,x.len ,{x.mn.first + f.add, x.mn.second} }; }
F composition(F f, F g) { return F{ f.add + g.add }; }
F id() { return F{ 0 }; }
#define INFO S,op,e,F,mapping,composition,id
signed main() {
ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int n, m;
cin >> n >> m;
lazy_segtree<INFO>tr(n + 1);
for (int i = 0; i < n; i++) {
int x; cin >> x;
tr.set(i, { x,1,1,{x,i} });
}
while (m--) {
int op, l, r, x;
cin >> op >> l >> r;
l--, r--;
if (op == 1) {
cin >> x;
tr.apply(l, r + 1, { x });
while (tr.all_query().mn.first <= 0) {
int i = tr.all_query().mn.second;
tr.set(i, { 0, 0, 1,{INF, 0} });
}
}
else {
cout << tr.query(l, r + 1).sum << "\n";
}
// for (int i = 1; i <= n; i++)cout << tr.query(i - 1, i).sum << ' '; Z;
}
return 0;
}
标签:return,int,线段,2024,--,最小值,sm,size,op
From: https://www.cnblogs.com/iscr/p/18276945