首页 > 编程语言 >C++题解(1) 信息学奥赛一本通 1003:对齐输出 洛谷 B2004:对齐输出 土豆编程 T1003:对齐输出

C++题解(1) 信息学奥赛一本通 1003:对齐输出 洛谷 B2004:对齐输出 土豆编程 T1003:对齐输出

时间:2024-06-23 15:30:04浏览次数:26  
标签:输出 题解 8d 空格 整数 printf 对齐

【题目描述】

读入三个整数,按每个整数占8个字符的宽度,右对齐输出它们,按照格式要求依次输出三个整数,之间以一个空格分开。

【输入】

只有一行,包含三个整数,整数之间以一个空格分开。

【输出】

只有一行,按照格式要求依次输出三个整数,之间以一个空格分开。

【输入样例】

123456789 0 -1

【输出样例】

123456789       0      -1

参考答案 

#include <bits/stdc++.h>
using namespace std; 
int main()
{
	int a,b,c;
	cin>>a>>b>>c;
	printf("%8d %8d %8d",a,b,c);
    return 0;
}

知识点:域宽 

*关于printf函数

例子:

printf("%8d",a); //指定域宽为8,a是整数

printf("%6.3lf",b); //指定域宽为6,b保留三位小数

printf("%.1lf",c); //c保留一位小数

标签:输出,题解,8d,空格,整数,printf,对齐
From: https://blog.csdn.net/2301_78151773/article/details/139900656

相关文章

  • 一些东西 题解
    ATBAB设\(f_{i,0/1}\)表示\(i\)子树DFS序奇/偶位置和的最大值,首先如果\(i\)所有孩子的子树大小都是偶数,那访问这些孩子的顺序就无所谓了,否则考虑以\(i\)的至少一个大小为奇数的孩子为分界,对所有大小为偶数的孩子\(v\),把\(f_{v,0}\)更大的\(v\)、\(f_{v,1}\)......
  • Linux 中输出第一个空格或者制表符之前的所有内容
     001、方法1[root@PC1test2]#lsa.txt[root@PC1test2]#cata.txt010203040506070809101112131415161718192021222324252627282930[root@PC1test2]#grep"^\S\+"a.txt##测试数据0102030......
  • [题解]CF311B Cats Transport
    思路首先,对于每一只小猫刚好玩完就被饲养员接走的出发时间必定为\(t_i-sd_i\)。那么,我们令\(a_i=t_i-sd_i\)表示第\(i\)只小猫的最早出发时间。因此,对于第\(k\)时刻出发的饲养员能接到的小猫当且仅当满足\(a_i\leqk\)。然后,我们定义\(dp_{i,j}\)表示用\(i\)......
  • [题解]CF245H Queries for Number of Palindromes
    思路定义\(dp_{i,j}\)表示区间\([i,j]\)中回文串的数量。那么,不难得出状态转移方程\(dp_{i,j}=dp_{i-1}+f_{i,j}\)。(其中\(f_{i,j}\)表示左端点大于等于\(i\),右端点为\(j\)的回文串数量)由此,现在问题转变为了如何求\(f_{i,j}\)。如果我们在求出了\(f_{i+1,j}......
  • [题解]CF154B Colliders
    思路首先我们将两种操作分开讨论:Part1加入操作那么,我们可以用一个数组\(vis_i=0/1\)表示\(i\)是关闭/开启状态,\(p_i\)表示因数有\(i\)的数。如果$vis_x=1$,说明此机器在之前已经启动过了,输出Success。然后,对\(x\)分解质因数,将质因数全部塞进一个集合\(a\)......
  • [题解]AT_dp_w Intervals
    思路首先考虑较为普通的DP。定义\(dp_{i,j}\)表示在前\(i\)个位置中,最后一个1在\(j\)的最大分数,显然有:\[dp_{i,j}=\left\{\begin{matrix}\max_{k=1}^{i-1}\{dp_{i-1,k}\}+\sum_{l_k\leqj\wedger_k=i}{a_k}&(i=j)\\dp_{i-1,j}+\sum......
  • [题解]AT_arc138_a [ARC138A] Larger Score
    思路不难发现:对于每一个\(i(1\leqi\leqk)\),如果能在\((k+1)\simn\)中找到任何一个\(j\),满足\(a_j>a_i\)就算满足条件。进一步思考,为了使操作数最小,对于每一个\(1(1\leqi\leqk)\),都找一个在\((k+1)\simn\)中第一个大于\(a_i\)的数,便于它交换。那么......
  • [题解]AT_arc116_d [ARC116D] I Wanna Win The Game
    思路因为题目与二进制有关,考虑往二进制的方向思考。定义\(dp_{i,j}\)表示在所有的\(n\)个数中,当前在决策对于每一个数在二进制表示下的第\(i\)位是\(0\)还是\(1\),且和为\(j\)的方案数。因为异或需要满足对于所有\(a_i\)表示为二进制后每一位\(1\)的个数均为偶数......
  • [题解]AT_arc116_b [ARC116B] Products of Min-Max
    思路我们容易可以得到一个朴素的做法,首先对\(a\)数组排序,然后枚举最大值和最小值\(a_i,a_j\),那么对于中间的元素都有选与不选两种情况,得到答案:\[\sum_{i=1}^{n}(a_i\timesa_i+(\sum_{j=i+1}^{n}a_i\timesa_j\times2^{j-i-1}))\]然后对这个式子......
  • [题解]AT_arc113_c [ARC113C] String Invasion
    题意给定一个字符串\(S\),你可以选择一个\(i(1\leqi\leq|S|)\),如果\(s_i=s_{i+1}\neqs_{i+2}\),就将\(s_{i+2}\)设为\(s_i\)。问:最多能操作几次。思路我们可以用一个后缀和\(s_{i,j}\)维护\(S_i\simS_n\)中与\(j\)不同的数量。然后,我们可以发现一......