首页 > 编程语言 >K-means聚类是一种非常流行的聚类算法

K-means聚类是一种非常流行的聚类算法

时间:2024-06-21 17:32:23浏览次数:28  
标签:means Point 算法 points new 质心 聚类

K-means聚类是一种非常流行的聚类算法,它的目标是将n个样本划分到k个簇中,使得每个样本属于与其最近的均值(即簇中心)对应的簇,从而使得簇内的方差最小化。K-means聚类算法简单、易于实现,并且在许多应用中都非常有效。
image


K-means算法的基本步骤:

  • 选择初始中心:随机选择k个样本点作为初始的簇中心,或者使用K-means++算法来更智能地选择初始簇中心。
  • 分配样本:将每个样本点分配到最近的簇中心,形成k个簇。
  • 更新簇中心:重新计算每个簇的中心,通常是簇内所有点的均值。
  • 迭代优化:重复步骤2和3,直到簇中心不再发生显著变化,或者达到预设的迭代次数。
  • 终止条件:当簇中心在连续迭代中的变化小于某个阈值,或者达到预设的最大迭代次数时,算法终止。

K-means算法的数学表示:

设 C={c1,c2,...,ck}C={c1,c2,...,ck} 为簇中心的集合,X={x1,x2,...,xn}X={x1,x2,...,xn} 为样本点集合。

K-means的目标是最小化簇内误差平方和(Within-Cluster Sum of Squares, WCSS):

J(C)=∑i=1k∑x∈Si∣∣x−ci∣∣2J(C)=∑i=1k∑x∈Si∣∣x−ci∣∣2

其中,SiSi 是簇 cici 中的样本点集合。

K-means算法的优缺点:

优点:

  • 算法简单,易于理解和实现。
  • 在处理大数据集时,计算效率较高。
  • 可以用于发现任意形状的簇。

缺点:

  • 需要预先指定k值,而k值的选择可能依赖于领域知识或试错。
  • 对初始簇中心的选择敏感,可能导致局部最优解。
  • 对噪声和异常点敏感,可能影响簇中心的计算。
  • 只能发现数值型特征的簇,不适合文本数据等非数值型数据。

K-means++算法:

K-means++是一种改进的K-means算法,用于更智能地选择初始簇中心,从而提高聚类的质量。K-means++的基本思想是:

  • 随机选择一个点作为第一个簇中心。
  • 对于每个剩余的点,计算其到最近簇中心的距离,并根据距离的平方选择下一个簇中心。
  • 重复步骤2,直到选择k个簇中心。

实际应用:

K-means聚类可以应用于多种场景,包括但不限于:

  • 市场细分:根据客户的特征将客户分组。
  • 图像分割:将图像分割成不同的区域或对象。
  • 社交网络分析:发现社交网络中的社区结构。
  • 文本聚类:对文档或新闻文章进行分组。

K-means聚类是一种非常实用的工具,但需要根据具体问题和数据集的特性来调整和优化。

下面是一个简单的Java实现K-means聚类算法的示例代码。这个示例将演示如何使用K-means算法对一组二维点进行聚类。

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Random;

public class KMeansClustering {

	static class Point {
		double x, y;

		Point(double x, double y) {
			this.x = x;
			this.y = y;
		}

		@Override
		public String toString() {
			return String.format("(%f, %f)", x, y);
		}
	}

	public static void kMeans(List<Point> points, int k, int maxIterations) {
		Random rand = new Random();
		List<Point> centroids = new ArrayList<>();
		// 初始化质心
		for (int i = 0; i < k; i++) {
			centroids.add(points.get(rand.nextInt(points.size())));
		}

		for (int iter = 0; iter < maxIterations; iter++) {
			// 1. 将每个点分配到最近的质心
			List<List<Point>> clusters = new ArrayList<>();
			for (int i = 0; i < k; i++) {
				clusters.add(new ArrayList<>());
			}
			for (Point point : points) {
				double minDistance = Double.MAX_VALUE;
				int closestCentroid = 0;
				for (int j = 0; j < k; j++) {
					double dist = point.distance(centroids.get(j));
					if (dist < minDistance) {
						minDistance = dist;
						closestCentroid = j;
					}
				}
				clusters.get(closestCentroid).add(point);
			}

			// 2. 更新质心
			boolean changed = false;
			List<Point> newCentroids = new ArrayList<>();
			for (List<Point> cluster : clusters) {
				if (cluster.isEmpty()) {
					newCentroids.add(centroids.get(0)); // 如果某个簇为空,随机选择一个质心
					changed = true;
				} else {
					Point newCentroid = cluster.get(0);
					for (Point point : cluster) {
						newCentroid = new Point(
							newCentroid.x / cluster.size() + point.x / cluster.size(),
							newCentroid.y / cluster.size() + point.y / cluster.size()
						);
					}
					newCentroids.add(newCentroid);
				}
			}

			// 检查质心是否变化,如果没有则停止迭代
			if (!changed && centroids.equals(newCentroids)) {
				break;
			}

			centroids.clear();
			centroids.addAll(newCentroids);
		}

		// 输出最终的质心和簇
		for (int i = 0; i < centroids.size(); i++) {
			System.out.println("Centroid " + i + ": " + centroids.get(i));
			System.out.print("Cluster " + i + ": ");
			for (Point point : clusters.get(i)) {
				System.out.print(point + " ");
			}
			System.out.println();
		}
	}

	public static void main(String[] args) {
		List<Point> points = new ArrayList<>();
		points.add(new Point(1.0, 2.0));
		points.add(new Point(1.5, 1.8));
		points.add(new Point(5.0, 8.0));
		points.add(new Point(8.0, 8.0));
		points.add(new Point(1.0, 0.6));
		points.add(new Point(9.0, 11.0));
		points.add(new Point(8.0, 2.0));
		points.add(new Point(10.0, 2.0));
		points.add(new Point(9.0, 3.0));

		int k = 3; // 簇的数量
		int maxIterations = 100; // 最大迭代次数

		kMeans(points, k, maxIterations);
	}
}

解释说明:

  • Point类:一个简单的Point类,包含x和y坐标,并重写了toString方法以便于打印。

  • kMeans方法:
    分配点到最近的质心:对于每个点,计算其到每个质心的距离,并将点分配到最近的质心所代表的簇。
    更新质心:计算每个簇所有点的均值,作为新的质心。
    接受一组点、簇的数量k和最大迭代次数maxIterations作为参数。
    随机选择初始质心。
    进行迭代,每次迭代包括两个主要步骤:

    • 分配点到最近的质心:对于每个点,计算其到每个质心的距离,并将点分配到最近的质心所代表的簇。
    • 更新质心:计算每个簇所有点的均值,作为新的质心。
  • 分配点到最近的质心:对于每个点,计算其到每个质心的距离,并将点分配到最近的质心所代表的簇。

  • 更新质心:计算每个簇所有点的均值,作为新的质心。

  • 如果质心没有变化,或者达到最大迭代次数,则停止迭代。

main方法:创建了一个点的列表,并指定了簇的数量和最大迭代次数,然后调用kMeans方法进行聚类。

这个示例代码演示了K-means聚类的基本实现,但它没有使用K-means++算法来选择初始质心,也没有处理空簇的情况。在实际应用中,可能需要根据具体问题进行相应的优化和改进。

标签:means,Point,算法,points,new,质心,聚类
From: https://www.cnblogs.com/xw-01/p/18260351

相关文章

  • 游戏中的寻路算法以及动态避障算法
    参考:即时战略游戏中实用的寻路算法都有哪些,比较如何?-知乎(zhihu.com) 寻路算法1.深度/广度优先搜索比较简单,略过  2.Dijkstra最短路径算法图文详解Dijkstra最短路径算法(freecodecamp.org) 3.A*寻路算法比较常见,略过  4.流场 FlowField该算法可以解决R......
  • [模式识别复习笔记] 第7章 聚类
    1.聚类给定样本集\(D=\{\bm{x}_1,\bm{x}_2,...,\bm{x}_n\}\),\(\bm{x}_i\in\mathbb{R}^d\)。通过聚类将\(n\)个样本划分为\(k\)个簇划分\(\mathcalC=\{C_1,C_2,...,C_k\}\),使得:\[C_i\capC_j=\emptyset,\\foralli\not=j\且\\......
  • A*算法实现最优路径规划
     用A*算法实现最优路径规划,绿色五角星为起点,红色四角星为终点,黑色方块为障碍物,如下图所示。简要介绍问题的估价函数、算法步骤、搜索路径、代码实现和代码运行结果。importmathfromrandomimportrandintimportpygamefromenumimportEnum#定义全局变量:地图中节点......
  • 神经网络与模式识别课程报告-卷积神经网络(CNN)算法的应用
     =======================================================================================完整的神经网络与模式识别课程报告文档下载:https://wenku.baidu.com/view/393fbc7853e2524de518964bcf84b9d528ea2c92?aggId=393fbc7853e2524de518964bcf84b9d528ea2c92&fr=catalogM......
  • 头歌机器学习实训答案 第1关:集成学习常用算法详解
    任务描述本关任务:学习集成学习的基本概念以及常用算法并编程熟悉sklearn。相关知识为了完成本关任务,你需要掌握:1.个体与集成的概念,2.常用的集成学习算法。个体和集成集成学习(ensemblelearning)通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统(multi-class......
  • 深度学习各算法的优缺点和适用场景!!纯干货,建议收藏。(下篇)
    ............纯   干  货........上篇地址:深度学习各算法的优缺点和适用场景!!纯干货,建议收藏。(上篇)-CSDN博客目录废话不说,直接上干货自编码器1、标准自编码器(VanillaAutoencoder)2、稀疏自编码器(SparseAutoencoder)3、去噪自编码器(Denoisin......
  • 深度学习各算法的优缺点和适用场景!!纯干货,建议收藏。(上篇)
     ........纯  干  货..........下篇地址:深度学习各算法的优缺点和适用场景!!纯干货,建议收藏。(下篇)-CSDN博客​目录前馈神经网络1、梯度下降(GradientDescent)2、随机梯度下降(StochasticGradientDescent,SGD)3、小批量梯度下降(Mini-batchGradi......
  • 算法合集
    算法合集这里是我的算法合集:博弈论Gametheory图论Graphtheory数论Numbertheory三角函数Trigonometricfunction字符串Strings计算几何Computationgeometry数据结构Structs动态规划DynamicprogrammingLIS问题LongestIncreasingSubsequenceproble......
  • 算法神尊
    作者:是轨迹呐标记说明:code,地点,算法武技、算法功法上篇算法大陆,诺伊宗,核心弟子居住区。一个面容清秀的少年正站在元始碑之下,望着碑上的文字默默祷告。那碑上,用黄金铸就的一行代码闪闪发亮:cout<<"Hello,world!";。元始碑是算法大陆的一种古老的传承,修炼每一种语言的码农都......
  • scau程序设计与算法(个人偷懒版(前两章
    目录1.四个常见问题18104 练习使用多case解题2.c++STL的运用19116 丑数18440 走迷宫18276 走迷宫218105 银行的叫号顺序18216 银行服务18118 勇者斗恶龙18107 校赛排名18104 练习使用多case解题时间限制:1000MS 代码长度限制:10KB提交次数:0通过次数......