首页 > 编程语言 >【python】OpenCV—Blob Detection(11)

【python】OpenCV—Blob Detection(11)

时间:2024-06-08 20:34:36浏览次数:34  
标签:11 DRAW python cv2 SimpleBlobDetector 斑点 OpenCV 过滤 params

在这里插入图片描述

学习来自OpenCV基础(10)使用OpenCV进行Blob检测

文章目录

1、cv2.SimpleBlobDetector_create 中文文档

cv2.SimpleBlobDetector_create 是 OpenCV 库中用于创建斑点检测器(Blob Detector)的函数。斑点检测是计算机视觉中的一个重要任务,用于检测图像中的小而明亮的区域,通常称为斑点或斑块。下面是 cv2.SimpleBlobDetector_create 函数的中文文档,包括其参数和用法:

一、函数概述
cv2.SimpleBlobDetector_create([params])

  • 功能:创建一个 SimpleBlobDetector 对象,用于在图像中检测斑点。
  • 参数:
    params(可选):一个 SimpleBlobDetector_Params 对象,用于设置斑点检测器的参数。如果未提供,则使用默认参数。

二、参数详解

SimpleBlobDetector_Params 对象包含以下参数,用于调整斑点检测器的行为:

阈值相关参数:

  • minThreshold:用于阈值处理的最小值。
  • maxThreshold:用于阈值处理的最大值。
  • thresholdStep:在 minThreshold 和 maxThreshold 之间递增的步长。

Blob大小参数:

  • filterByArea:是否按斑点面积过滤斑点。
  • minArea:用于过滤的最小斑点面积
  • maxArea:用于过滤的最大斑点面积

Blob形状参数:

  • filterByCircularity:是否按斑点圆度过滤斑点。
  • minCircularity:用于过滤的最小圆度值(范围从0到1,其中1表示完美的圆)。
  • maxCircularity:用于过滤的最大圆度值。

Blob凸性参数:

  • filterByConvexity:是否按斑点凸性过滤斑点。
  • minConvexity:用于过滤的最小凸性值(范围从0到1,其中1表示完全凸的斑点)。

Blob惯性比参数:(它衡量的是一个形状的伸长程度

  • filterByInertia:是否按斑点惯性比过滤斑点。
  • minInertiaRatio:用于过滤的最小惯性比值(范围从0到1)。

其他参数:

  • minRepeatability:斑点检测的最小重复次数(用于去除噪声)。
  • minDistBetweenBlobs:斑点之间的最小距离(用于去除重叠的斑点)。

在这里插入图片描述

2、默认 parameters

import cv2
import numpy as np

im = cv2.imread("C://Users/Administrator/Desktop/1.jpg", cv2.IMREAD_GRAYSCALE)

ver = (cv2.__version__).split('.')
print(ver)  # ['4', '4', '0']

if int(ver[0]) < 3:
    detector = cv2.SimpleBlobDetector()
else:
    detector = cv2.SimpleBlobDetector_create()

# 检测blobs
keypoints = detector.detect(im)

# 用红色圆圈画出检测到的blobs
im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0,0,255), 
                                      cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

# 结果显示
cv2.imshow("Keypoints", im_with_keypoints)
cv2.waitKey(0)
cv2.destroyAllWindows()

输入图像

请添加图片描述
输出图像

在这里插入图片描述

3、配置 parameters

import cv2
import numpy as np

im = cv2.imread("C://Users/Administrator/Desktop/3.jpg", cv2.IMREAD_GRAYSCALE)


# 设置SimpleBlobDetector参数
params = cv2.SimpleBlobDetector_Params()

# 改变阈值
params.minThreshold = 10
params.maxThreshold = 200

# 根据面积过滤
params.filterByArea = True
params.minArea = 1500

# 根据Circularity过滤
params.filterByCircularity = True
params.minCircularity = 0.1

# 根据Convexity过滤
params.filterByConvexity = True
params.minConvexity = 0.87

# 根据Inertia过滤
params.filterByInertia = True
params.minInertiaRatio = 0.01

# 创建一个带有参数的检测器
ver = (cv2.__version__).split('.')
if int(ver[0]) < 3:
    detector = cv2.SimpleBlobDetector(params)
else:
    detector = cv2.SimpleBlobDetector_create(params)

# 检测blobs
keypoints = detector.detect(im)

# 用红色圆圈画出检测到的blobs
im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0, 0, 255),
                                      cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

# 结果显示
cv2.imshow("Keypoints", im_with_keypoints)
cv2.waitKey(0)

输入图片
在这里插入图片描述

输出图片

在这里插入图片描述

附录——cv2.drawKeypoints

函数定义

  • cv2.drawKeypoints(image, keypoints, outImage[, color[, flags]])

参数

  • image:原始图片,数据类型应为 8-bit 单通道或三通道图像。

  • keypoints:关键点列表,通常是由特征点检测算法(如 SIFT、SURF、ORB 等)生成。

  • outImage:输出图像,绘制关键点后的图像将保存在这个变量中。可以设置为原始图像,以在原始图像上直接绘制关键点。

  • color:颜色设置,用于绘制关键点的颜色。它是一个包含三个整数值的元组,分别代表蓝色、绿色和红色的强度,取值范围在 0-255 之间。例如,(255, 0, 0) 表示红色。

  • flags:绘图功能的标识设置,用于控制关键点的绘制方式。它是一个可选参数,可以设置为以下值之一或它们的组合(通过按位或运算 |):

    • cv2.DRAW_MATCHES_FLAGS_DEFAULT:创建输出图像矩阵,使用现存的输出图像绘制匹配对和特征点,对每一个关键点只绘制中间点。
    • cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG:不创建输出图像矩阵,而是在输出图像上绘制匹配对。
    • cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS:对每一个特征点绘制带大小和方向的关键点图形。
    • cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS:单点的特征点不被绘制。
  • 返回值
    该函数没有直接的返回值,但会将绘制了关键点的图像保存在 outImage 参数中。

标签:11,DRAW,python,cv2,SimpleBlobDetector,斑点,OpenCV,过滤,params
From: https://blog.csdn.net/bryant_meng/article/details/139550535

相关文章

  • 100天精通风控建模(原理+Python实现)——第28天:风控建模中逻辑回归是什么?主要应用在
    在当今风险多变的环境下,风控建模已经成为金融机构、企业等组织的核心工作之一。在各大银行和公司都实际运用于业务,用于营销和风险控制等。本文以视频的形式阐述风控建模中逻辑回归是什么,主要应用在哪些方面。并提供风控建模原理和Python实现文章清单。  之前已经阐述了1......
  • python 多任务之多进程
    多任务优势多个任务同时执行可以大大提高程序执行效率,可以充分利用CPU资源,提高程序的执行效率概念是指在同一时间内执行多个任务多进程概念进程(process)是资源分配的最小单位,他是操作系统进行资源分配和调度运行的基本单位,比如:一个正在运行的程序就是一个进程,如QQ,微信等......
  • 运筹学练习Python精解——运输和指派问题
    练习1如下表的运输问题中总需要量超过总供应量(方框中的数字是单位运费)。假定对销地\(B_1\)、\(B_2\)和\(B_3\)未满足需要量的单位罚款成本是5、3和2,试建立该问题的数学模型,并探讨能否将其转变为产销平衡运输问题。产地\销地B1B2B3供应量A151710A264......
  • Python【cv2:读取图片时报错】
    写在前面:opencv库安装在终端用pipinstall安装opencv-python库建议使用国内清华源的镜像去安装,加参数-ihttps://pypi.tuna.tsinghua.edu.cn/simple代码如下:pipinstall-ihttps://pypi.tuna.tsinghua.edu.cn/simpleopencv-python报错一我一开始直接用cv2.imread(p......
  • Python学习日记Day1
    目录一、Python的安装二、输出print()1,输出单变量后换行——print(*)2,连续输出多个变量不换行——print(*,*,*,*,*)用英文逗号分离3,使用ASCII码进行输出——借助chr()函数4,使用Unicode码进行输出——借助ord()函数 5,ASCII码与Unicode码的相互转换6,使用print()函数将内......
  • Python基础操作之模块 -- pandas之groupby函数
            groupby函数是pandas库中一个非常强大的功能,它允许你根据一个或多个列的值对DataFrame或Series进行分组,并对每个组执行各种聚合操作。目录示例详解1.导入必要的库和创建DataFrame2.使用groupby函数进行分组3.遍历分组并查看内容4.对分组执行聚合操作......
  • 【python】python电影评论数据抓取分析可视化(源码+数据+课程论文)【独一无二】
    ......
  • 极简 Python:10 段代码,学会基础 python
    前言:本篇共包含10段简单的Python,涉及常用语法和常用库(但毫无疑问删减了很多,比如没有字典)任何不懂的地方可直接留言~注:如果某个地方以 “#”开始意思是:这是注释一、数据类型涉及Python中最常用的基本数据类型及其操作包括数字、字符串和列表#数字操作a=10b......
  • 我的职业生涯转型:金融到Python的跨越
    我是一位专科学历的专业人士,曾在金融行业深耕近十载。如今,我站在了人生的十字路口,面对着家庭、房贷和职业发展的多重压力。我代表了那些在大城市奋斗却难以扎根,同时在职业道路上感到迷茫的一群人。金融行业的变迁与个人觉醒在上海这座大都市,我度过了十年的金融生涯。从银......
  • 【Python】DQN处理CartPole-v1
    DQN是强化学习中的一种方法,是对Q-Learning的扩展。通过引入深度神经网络、经验回放和目标网络等技术,使得Q-Learning算法能够在高维、连续的状态空间中应用,解决了传统Q-Learning方法在这些场景下的局限性。Q-Learning可以见之前的文章。算法的几个关键点:1.深度学习估计状态动......