首页 > 编程语言 >基于BP神经网络的QPSK解调算法matlab性能仿真

基于BP神经网络的QPSK解调算法matlab性能仿真

时间:2024-05-22 23:19:00浏览次数:36  
标签:QPSK 解调 神经网络 length BP matlab Srx divT

1.算法运行效果图预览

 

 

2.算法运行软件版本

matlab2022a

 

3.算法理论概述

        QPSK(Quadrature Phase Shift Keying)是一种常见的数字调制方式,通过载波的四种相位状态来传输两比特信息。在接收端,准确解调出原始数据成为关键任务。传统的方法如相干解调虽有效但对同步要求较高,而基于BP(Back Propagation)神经网络的解调算法提供了一种自适应、非线性处理手段,尤其适用于复杂信道条件下的解调。

 

       QPSK信号在经过信道传输后,会受到噪声干扰、多径效应等影响,导致星座点偏移或失真,增加了传统解调方法的误码率。BP神经网络以其强大的非线性拟合能力和自适应学习能力,能够学习并补偿这些失真,从而实现更稳健的解调。

 

       假设接收到的QPSK信号为s(t),经过匹配滤波器后得到基带信号r(t),通过采样得到离散信号{r[n]},作为BP神经网络的输入。网络的输出层设计为四个神经元,分别对应QPSK的四种相位状态,输出概率最大的神经元所对应的相位即为解调结果。

 

       设输入层节点数为NI​,隐藏层节点数为NH​,输出层节点数为NO​=4(对应QPSK的四个相位)。网络权重矩阵分别为W(1)(输入到隐藏层)和W(2)(隐藏层到输出层),偏置向量为b(1)和b(2)。

 

       对于输入向量x,第j个隐藏层神经元的激活值aj(1)​计算如下:

 

 

 

       利用已知的QPSK信号样本集对网络进行训练,不断迭代上述过程直至收敛。训练完成后,使用测试集验证网络性能,通过比较解调出的比特序列与原序列的差异来评估误码率(BER)。

 

 

 

 

4.部分核心程序

for ij = 1:length(SNR)
    ij
    for j = 1:20
        % 数据划分比例
        divT = 0.05; % 训练数据占全部数据的20%
        divV = 0.2; % 验证数据占全部数据的10%
        % 分割训练集和验证集
        SrxT = Srx(1,1:floor(divT*length(Srx)));% 训练集信号
        StxT = Stx(1,1:floor(divT*length(Stx)));% 训练集期望结果
        SrxV = Srx(1  ,floor(divT*length(Srx))+1:floor((divT+divV)*length(Srx)));% 验证集信号
        StxV = Stx(1  ,floor(divT*length(Stx))+1:floor((divT+divV)*length(Stx)));% 验证集期望结果
        
        %为每个神经网络寻找最佳超参数组合
        [accuracy,yfit] = func_ANN_qpsk(Si, Sh, Nlabel, lambda, IQmap, SrxT, StxT, SrxV, StxV);
        err(ij,j)=1-accuracy/100;
    end
end
 
 
% 调用函数绘制星座图,展示数据的10%
func_constellation(Srx,Stx,0.5)  
 
figure;
semilogy(SNR,mean(err,2),'b-o');
grid on
xlabel('SNR');
ylabel('误码率');
legend('QPSK误码率');
 
 
figure
plot(yfit,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('训练迭代次数');
ylabel('神经网络训练曲线');

  

标签:QPSK,解调,神经网络,length,BP,matlab,Srx,divT
From: https://www.cnblogs.com/matlabworld/p/18207358

相关文章

  • 2022-06-29-对抗型交叉评价dea模型matlab代码
    对抗型交叉评价DEA模型matlab代码,代码来自于彭育威老师的《利用MATLAB进行DEA交叉评价分析》一文,​非常适合学习。如果您想做仁慈型DEA​,可与我联系。clearX=[3060554070;2540703090;13015012070180];%用户键入输入矩阵Y=[3543765263;6080534271];......
  • 基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本matlab2022a  3.算法理论概述      基于YOLOv2深度学习网络模型的鱼眼镜头中人员检测算法结合了YOLOv2的高效目标检测能力和对鱼眼镜头畸变的校正处理,以实现对鱼眼图像中人员的准确识别。YOLOv2(YouOnlyLookO......
  • BP神经网络实现分类模型
    训练数据生成每个x向量维度为3,y标签使用one-hot编码进行3分类。生成的数据如下:构建BP神经网络模型初始化权重和偏置矩阵如下:训练神经网络绘制梯度下降损失函数曲线图附(如果采用梯度下降更新权重,即权重值发生少量变化后,基于损失值的变化更新权重的方法如下:......
  • m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码率
    1.算法仿真效果matlab2022a仿真结果如下:   2.算法涉及理论知识概要      低密度奇偶校验码(Low-DensityParity-CheckCode,LDPC码)是一种高效的前向纠错码,广泛应用于无线通信、数据存储等领域。BP(BeliefPropagation)译码算法,又称为消息传递算法,是LDPC码最常用......
  • WebP图像格式的原理 与图像压缩的关系
    目录WebP简介原理为什么对预测数据做残差就可以提高压缩率呢?为什么使用算术编码压缩率高于哈夫曼编码?WebP简介\(\quad\)目前在互联网上,图片流量仍占据较大的一部分。因此,在保证图片质量不变的情况下,节省流量带宽是大家一直需要去解决的问题。传统的图片格式,如JPEG,PNG,GIF等格式......
  • subprocess.run 和 subprocess.Popen 区别
    subprocess.run:是阻塞式,非交互性,返回值:不是我们想要的执行结果或相关信息,而是一个CompletedProcess类型对象subprocess.Popen:非阻塞式,交互性,返回值:是一个Popen对象,<subprocess.Popenobjectat0x0000000002B17668>Popen对象的stdin、stdout和stderr是三个文件句柄,可以像文......
  • eBPF常用map类型
    map种类map类型特点HashMapBPF_MAP_TYPE_HASHhashmap。BPF_MAP_TYPE_PERCPU_HASHpercore的hashmap。BPF_MAP_TYPE_LRU_HASHmap塞满之后,继续插入,自动删除最近最少使用的entry。ArrayMapBPF_MAP_TYPE_ARRAY数组,key是整数。......
  • m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
    1.算法仿真效果matlab2022a仿真结果如下:   2.算法涉及理论知识概要       低密度奇偶校验码(Low-DensityParity-Check,LDPC)是一种高效的前向纠错码,因其优越的纠错性能和近似香农限的接近程度而广泛应用于现代通信系统中。LDPC码的编译码算法众多,其中BeliefProp......
  • ABP 框架 AutoMapper 映射实体时提示 Unmapped members were found 缺少 FullAuditedE
    在配置MapperProfile的时候, 运行提示映射出错:对于Workflow->WorkflowDto和CreateUpdateWorkflowDto->Workflow的映射,存在没有映射的属性 IsDeleted,DeleterId,DeletionTime,LastModificationTime,LastModifierId,CreationTime和CreatorId。我之前写代码都没有映射这......
  • matlab练习程序(线性常微分方程组矩阵解)
    之前有通过ode和simulink解线性常微分方程组。除了上面两种方法,线性常微分方程组还可以通过矩阵的方法求解。比如下面这个之前使用的方程组:x''=x'-x+y'-z'y''=y'-y-x'z''=z'-z+x'可以写成下面矩阵形式: 设这个矩阵为A,那么解可以表示为如下形式:可以直......