首页 > 编程语言 >说说你对算法中时间复杂度,空间复杂度的理解?如何计算?

说说你对算法中时间复杂度,空间复杂度的理解?如何计算?

时间:2024-04-09 17:47:26浏览次数:22  
标签:复杂度 算法 理解 时间 空间 let sum

一、前言

算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别

衡量不同算法之间的优劣主要是通过时间和空间两个维度去考量:

  • 时间维度:是指执行当前算法所消耗的时间,我们通常用「时间复杂度」来描述。
  • 空间维度:是指执行当前算法需要占用多少内存空间,我们通常用「空间复杂度」来描述

通常会遇到一种情况,时间和空间维度不能够兼顾,需要在两者之间取得一个平衡点是我们需要考虑的

一个算法通常存在最好、平均、最坏三种情况,我们一般关注的是最坏情况

最坏情况是算法运行时间的上界,对于某些算法来说,最坏情况出现的比较频繁,也意味着平均情况和最坏情况一样差

二、时间复杂度

时间复杂度是指执行这个算法所需要的计算工作量,其复杂度反映了程序执行时间「随输入规模增长而增长的量级」,在很大程度上能很好地反映出算法的优劣与否

一个算法花费的时间与算法中语句的「执行次数成正比」,执行次数越多,花费的时间就越多

算法的复杂度通常用大O符号表述,定义为T(n) = O(f(n)),常见的时间复杂度有:O(1)常数型、O(log n)对数型、O(n)线性型、O(nlogn)线性对数型、O(n^2)平方型、O(n^3)立方型、O(n^k)k次方型、O(2^n)指数型,如下图所示:

 从上述可以看到,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低,由小到大排序如下:

Ο(1)<Ο(log n)<Ο(n)<Ο(nlog n)<Ο(n2)<Ο(n3)<…<Ο(2^n)<Ο(n!)

注意的是,算法复杂度只是描述算法的增长趋势,并不能说一个算法一定比另外一个算法高效,如果常数项过大的时候也会导致算法的执行时间变长

关于如何计算时间复杂度,可以看看如下简单例子:

function process(n) {
  let a = 1
  let b = 2
  let sum = a + b
  for(let i = 0; i < n; i++) {
    sum += i
  }
  return sum
}

该函数算法需要执行的运算次数用输入大小n的函数表示,即 T(n) = 2 + n + 1,那么时间复杂度为O(n + 3),又因为时间复杂度只关注最高数量级,且与之系数也没有关系,因此上述的时间复杂度为O(n)

又比如下面的例子:

function process(n) {
 let count = 0
  for(let i = 0; i < n; i++){
    for(let i = 0; i < n; i++){
      count += 1
    }
  }
}

循环里面嵌套循环,外面的循环执行一次,里面的循环执行n次,因此时间复杂度为 O(n*n*1 + 2) = O(n^2)

对于顺序执行的语句,总的时间复杂度等于其中最大的时间复杂度,如下:

function process(n) {
  let sum = 0
  for(let i = 0; i < n; i++) {
    sum += i
  }
  for(let i = 0; i < n; i++){
    for(let i = 0; i < n; i++){
      sum += 1
    }
  }
  return sum
}

上述第一部分复杂度为O(n),第二部分复杂度为O(n^2),总复杂度为max(O(n^2), O(n)) = O(n^2)

又如下一个例子:

function process(n) {
  let i = 1; // ①
  while (i <= n) {
     i = i * 2; // ②
  }
}

循环语句中以2的倍数来逼近n,每次都乘以2。如果用公式表示就是1 * 2 * 2 * 2 … * 2 <=n,也就是说2的x次方小于等于n时会执行循环体,记作2^x <= n,于是得出x<=logn

因此循环在执行logn次之后,便结束,因此时间复杂度为O(logn)

同理,如果一个O(n)循环里面嵌套O(logn)的循环,则时间复杂度为O(nlogn),像O(n^3)无非也就是嵌套了三层O(n)循环

三、空间复杂度

空间复杂度主要指执行算法所需内存的大小,用于对程序运行过程中所需要的临时存储空间的度量

除了需要存储空间、指令、常数、变量和输入数据外,还包括对数据进行操作的工作单元和存储计算所需信息的辅助空间

下面给出空间复杂度为O(1)的示例,如下

let a = 1
let b = 2
let c = 3

上述代码的临时空间不会随着n的变化而变化,因此空间复杂度为O(1)

let arr []
for(i=1; i<=n; ++i){
  arr.push(i)
}

上述可以看到,随着n的增加,数组的占用的内存空间越大

通常来说,只要算法不涉及到动态分配的空间,以及递归、栈所需的空间,空间复杂度通常为O(1),一个一维数组a[n],空间复杂度O(n),二维数组为O(n^2)

参考文献

  • https://juejin.cn/post/6844904167824162823#heading-7

  • https://zhuanlan.zhihu.com/p/50479555

  • https://cloud.tencent.com/developer/article/1769988

如果对您有所帮助,欢迎您点个关注,我会定时更新技术文档,大家一起讨论学习,一起进步。

 

标签:复杂度,算法,理解,时间,空间,let,sum
From: https://www.cnblogs.com/smileZAZ/p/18124430

相关文章

  • 使用SPI+DMA控制算法驱动WS2812
    1、ws2812b是一款集控制电路与发光电路于一体的智能外控LED光源,采用单线归0码协议,每个像素点的三基色颜色可实现256级亮度显示。速率能达到1024pixel×30fps/s,故被广泛用于各种需要大量使用RGB灯的场合。2、不同厂商生产的ws2812存在不同的时序要求,下图是一款最常见的ws2812b......
  • 20天【代码随想录算法训练营34期】第六章 二叉树part07 ( ● 530.二叉搜索树的最小绝对
    530.二叉搜索树的最小绝对差#Definitionforabinarytreenode.#classTreeNode:#def__init__(self,val=0,left=None,right=None):#self.val=val#self.left=left#self.right=rightclassSolution:deftraversal(self,......
  • 面试中数据结构与算法——知识点最全总结(学完可应对一线大厂)
    各大厂历年高频面试题系列,以下为部分内容不包括全部:双指针类面试题括号类面试题回文类面试题递推类面试题树型dp类面试题区间dp类面试题背包dp类面试题排序相关面试题常见贪心面试题常见图算法面试题子数组类面试题子序列类面试题二分类面试题bfs与dfs类面试......
  • 1. 通信软件基础-移动通信中的算法问题-实验
    目录简介 任务描述:关键词:无线信号强度排序算法相关检测无线信号强度计算 基站信号强度排序相关检测代码模块头文件定义:函数相关:快排:无限信号求和:主函数:变量定义主要流程一主要流程二(搭档写的)总结简介移动通信中的算法问题是指在移动通信系统中,为了实......
  • 深度解读RAGFlow的深度文档理解DeepDoc
    4月1日,Infinity宣布端到端RAG解决方案RAGFlow开源,仅一天收获上千颗星,到底有何魅力?我们来安装体验并从代码层面来分析看看。安装体验服务器需要有docker,或者直接访问官方提供的demo:https://demo.ragflow.io/docker-compose安装需要确保vm.max_map_count不小于2621......
  • 深度探索:机器学习Deep Belief Networks(DBN)算法原理及其应用
    目录1.引言与背景2.定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景深度学习在近年来取得了显著进展,其在图像识别、语音识别、自然语言处理等多个领域的成功应用引发了广泛的关注。其中,DeepBeliefNetworks......
  • 深度探索:机器学习堆叠泛化(Stacked Generalization, Blending)算法原理及其应用
    目录1.引言与背景2.集成学习定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景机器学习领域中,模型性能的提升往往依赖于对数据特征的深入理解、恰当的模型选择以及有效的超参数调整。然而,在面对复杂且高度非线性......
  • 深度探索:机器学习多维尺度(MDS)算法原理及其应用
    目录1.引言与背景2.MDS定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景多维尺度分析(Multi-DimensionalScaling,MDS)是一种统计学方法,用于将复杂、高维的相似性或距离数据转化为直观的、低维的可视化表示。MD......
  • 冒泡排序的基本实现【数据结构与算法—TypeScript 实现】
    笔记整理自coderwhy『TypeScript高阶数据结构与算法』课程概念本质:相邻元素两两比较并交换位置,使整个序列按照特定的顺序排列特性复杂度分析时间复杂度:最好情况:O(n)最坏情况:O(n^2)平均情况:O(n^2)空间复杂度:O(1),原地排序使用场景因为时间复杂度为O(n^2)适......
  • 优先队列的基本实现【数据结构与算法—TypeScript 实现】
    笔记整理自coderwhy『TypeScript高阶数据结构与算法』课程特性效率比普通队列高每个出队元素拥有最高优先级可以用数组、链表等数据结构实现,但是堆结构是最常用的实现方式设计实现方式:基于堆结构实现,堆结构底层基于数组实现属性:heap:存放队列元素方法:enq......