首页 > 编程语言 >FJSP:蜣螂优化算法( Dung beetle optimizer, DBO)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

FJSP:蜣螂优化算法( Dung beetle optimizer, DBO)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

时间:2024-04-06 19:02:23浏览次数:14  
标签:... 工序 optimizer FJSP DBO jh 机器 工件 ldots

一、柔性作业车间调度问题

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工序的处理时间可能不同。FJSP问题的目标是找到一个最优的作业调度方案,使得所有作业的完成时间最小化。这个问题的难点在于需要考虑到多个作业、多个机器和多个工序之间的复杂关系,并且需要在有限的时间内找到最优解。

柔性作业车间调度问题( FJSP) 的描述如下:n个工件 { J , J 2 , . . , J n } \{J,J_2,..,J_n\} {J,J2​,..,Jn​}要在 m m m 台机器 { M 1 , M 2 , . . , M m } \{M_1,M_2,..,M_m\} {M1​,M2​,..,Mm​} 上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。因此,柔性作业车间调度问题包含两个子问题:确定各工件的加工机器 (机器选择子问题) 和确定各个机器上的加工先后顺序 (工序排序子问题)。

此外,在加工过程中还需要满足下面的约束条件:
(1) 同一台机器同一时刻只能加工一个工件;
(2) 同一工件的同一道工序在同一时刻只能被一台机器加工;
(3) 每个工件的每道工序一旦开始加工不能中断;
(4) 不同工件之间具有相同的优先级;
(5)不同工件的工序之间没有先后约束,同一工件的工序之间有先后约束;
(6)所有工件在零时刻都可以被加工。

1.1符号描述

n : n: n:工件总数;
m : m: m: 机器总数;
i , e : i,e: i,e: 机器序号, i , e = 1 , 2 , 3 , . . . , m i,e=1,2,3,...,m i,e=1,2,3,...,m ;
j , k : j,k: j,k: 工件序号, j , k = 1 , 2 , 3 , . . . , n ; j,k=1,2,3,...,n; j,k=1,2,3,...,n; h j : h_j: hj​:工件 j j j 的工序总数;
h , l : h,l: h,l: 工序序号, h = 1 , 2 , 3 , . . . , h j h=1,2,3,...,h_j h=1,2,3,...,hj​ ;
Ω j h : \Omega_{jh}: Ωjh​:工件 j j j 的第 h h h 道工序的可选加工机器集;
m j h : m_{jh}: mjh​:工件 j j j 的第 h h h 道工序的可选加工机器数;
O j h : O_{jh}: Ojh​:工件 j j j 的第 h h h道工序;
M i j h : M_{ijh}: Mijh​:工件 j j j 的第 h h h道工序在机器 i i i 上加工;
p i j h : p_{ijh}: pijh​:工件 j j j的第 h h h道工序在机器 i i i上的加工时间;
s j h : s_{jh}: sjh​:工件 j j j 的第 h h h 道工序加工开始时间;
c j h : c_{jh}: cjh​:工件 j j j的第 h h h道工序加工完成时间;
d j : d_j: dj​:工件 j j j 的交货期;
L L L: 一个足够大的正数;
C j C_j Cj​: 每个工件的完成时间;
C max ⁡ : C_{\max}: Cmax​: 最大完工时间;
T o : T o = ∑ j = 1 n h j T_o:\quad T_o=\sum_{j=1}^nh_j To​:To​=∑j=1n​hj​, 所有工件工序总数;
x i j h = { 1 , 如果工序 O j h 选择机器 i ; 0 , 否则; x_{ijh}=\begin{cases}1,\text{如果工序}O_{jh}\text{选择机器}i;\\0,\text{否则;}\end{cases} xijh​={1,如果工序Ojh​选择机器i;0,否则;​
y i j h k l = { 1 , 如果 O i j h 先于 O i k l 加工 ; 0 , 否则 ; y_{ijhkl}=\begin{cases}1,\text{如果}O_{ijh}\text{先于}O_{ikl}\text{加工};\\0,\text{否则};\end{cases} yijhkl​={1,如果Oijh​先于Oikl​加工;0,否则;​

1.2约束条件

C 1 : s j h + x i j h × p i j h ≤ c j h C_{1}:s_{jh}+x_{ijh}\times p_{ijh}\leq c_{jh} C1​:sjh​+xijh​×pijh​≤cjh​

其中: i = 1 , … , m ; j = 1 , … , n ; i=1,\ldots,m;j=1,\ldots,n; i=1,…,m;j=1,…,n; h = 1 , … , h j h=1,\ldots,h_j h=1,…,hj​
C 2 : c j h ≤ s j ( h + 1 ) C_{2}:c_{jh}\leq s_{j(h+1)} C2​:cjh​≤sj(h+1)​
其中 : j = 1 , … , n ; h = 1 , . . . , h j − 1 :j=1,\ldots,n;h=1,...,h_j-1 :j=1,…,n;h=1,...,hj​−1
C 3 : c j h j ≤ C max ⁡ C_{3}:c_{jh_j}\leq C_{\max} C3​:cjhj​​≤Cmax​
其中: j = 1 , . . . , n j=1,...,n j=1,...,n
C 4 : s j h + p i j h ≤ s k l + L ( 1 − y i j h k l ) C_{4}:s_{jh}+p_{ijh}\leq s_{kl}+L(1-y_{ijhkl}) C4​:sjh​+pijh​≤skl​+L(1−yijhkl​)

其中 : j = 0 , … , n ; k = 1 , … , n ; h = 1 , … , h j ; l = 1 , … , h k ; i = 1 , … , m :j=0,\ldots,n;k=1,\ldots,n;h=1,\ldots,h_j;l=1,\ldots,h_k;i=1,\ldots,m :j=0,…,n;k=1,…,n;h=1,…,hj​;l=1,…,hk​;i=1,…,m
C 5 : c j h ≤ s j ( h + 1 ) + L ( 1 − y i k l j ( h + 1 ) ) C_{5}:c_{jh}\leq s_{j(h+1)}+L(1-y_{iklj(h+1)}) C5​:cjh​≤sj(h+1)​+L(1−yiklj(h+1)​)

其中 : j = 1 , … , n ; k = 0 , … , n ; h = 1 , … , h j − 1 ; l = 1 , … , h k ; i = 1 , … , m :j=1,\ldots,n;k=0,\ldots,n;h=1,\ldots,h_j-1;\quad l=1,\ldots,h_k;\quad i=1,\ldots,m :j=1,…,n;k=0,…,n;h=1,…,hj​−1;l=1,…,hk​;i=1,…,m
h 1 : ∑ i = 1 m j h x i j h = 1 h_{1}:\sum_{i=1}^{m_{jh}}x_{ijh}=1 h1​:∑i=1mjh​​xijh​=1
其中: h = 1 , . . . , h j ; j = 1 , . . . , n ; h=1,...,h_j;j=1,...,n; h=1,...,hj​;j=1,...,n;

h 2 : ∑ j = 1 n ∑ h = 1 h j y i j h k l = x i k l h_{2}:\sum_{j=1}^n\sum_{h=1}^{h_j}y_{ijhkl}=x_{ikl} h2​:∑j=1n​∑h=1hj​​yijhkl​=xikl​

其中: i = 1 , … , m ; k = 1 , … , n ; l = 1 , … , h k i=1,\ldots,m;k=1,\ldots,n;l=1,\ldots,h_k i=1,…,m;k=1,…,n;l=1,…,hk​
h 3 : ∑ i = 1 n ∑ i = 1 n k y i j h k l = x i j h h_{3}:\sum_{i=1}^n\sum_{i=1}^{n_k}y_{ijhkl}=x_{ijh} h3​:∑i=1n​∑i=1nk​​yijhkl​=xijh​

其中: i = 1 , … , m ; j = 1 , … , n ; h = 1 , … , h k i=1,\ldots,m;j=1,\ldots,n;\quad h=1,\ldots,h_k i=1,…,m;j=1,…,n;h=1,…,hk​
C 6 : s j h ≥ 0 , c j h ≥ 0 C_{6}:s_{jh}\geq0,c_{jh}\geq0 C6​:sjh​≥0,cjh​≥0

其中 : j = 0 , 1 , . . . , n ; h = 1 , . . . , h j :j=0,1,...,n;h=1,...,h_j :j=0,1,...,n;h=1,...,hj​

C 1 C_{1} C1​和 C 2 C_{2} C2​表示每一个工件的工序先后顺序约束 ;
C 3 C_{3} C3​表示工件的完工时间的约束,即每一个工件的完工时间不可能超过总的完工时间 ;
C 4 C_{4} C4​和 C 5 C_{5} C5​表示同一时刻同一台机器只能加工一道工序 ;
h 1 h_{1} h1​表示机器约束,即同一时刻同一道工序只能且仅能被一台机器加工;
h 2 h_{2} h2​和 h 3 h_{3} h3​表示存在每一台机器上可以存在循环操作 ;
C 6 C_{6} C6​表示各个参数变量必须是正数。

1.3目标函数

FJSP的目标函数是最大完工时间最小。完工时间是每个工件最后一道工序完成的时间,其中最大的那个时间就是最大完工时间(makespan)。它是衡量调度方案的最根本指标, 主要体现车间的生产效率,如下式所示:

f = min ⁡ ( max ⁡ l ≤ j ≤ n ( C j ) ) f=\min(\max_{\mathrm{l\leq}j\leq n}(C_j)) f=min(maxl≤j≤n​(Cj​))

参考文献:
[1]张国辉.柔性作业车间调度方法研究[D].华中科技大学,2009.

二、算法简介

蜣螂优化算法( Dung beetle optimizer, DBO)是由 Jiankai Xue 等于2022 年提出的一种群体智能优化算法。其灵感来源于蜣螂的生物行为过程,具有寻优能力强,收敛速度快的特点。
参考文献:Xue, J., Shen, B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J Supercomput (2022). https://doi.org/10.1007/s11227-022-04959-6

原文链接:https://blog.csdn.net/weixin_46204734/article/details/128138381

三、算法求解FJSP

3.1部分代码

dim=2*sum(operaNumVec);
LB = -jobNum * ones(1, dim);
UB = jobNum * ones(1, dim);
Max_iteration = 100;
SearchAgents_no = 100;
fobj=@(x)fitness(x, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 优化算法求解FJSP
[fMin , bestX, Convergence_curve ] = DBO(SearchAgents_no,Max_iteration,LB,UB,dim,fobj);
machineTable=GetMachineTable(bestX, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 画收敛曲线图
figure
plot(Convergence_curve,'g-','linewidth',2)
xlabel('迭代次数')
ylabel('最大完工时间')
legend('DBO')
saveas(gca,'1.jpg');

3.2部分结果

在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码

标签:...,工序,optimizer,FJSP,DBO,jh,机器,工件,ldots
From: https://blog.csdn.net/weixin_46204734/article/details/137435162

相关文章

  • FJSP:霸王龙优化算法(Tyrannosaurus optimization,TROA)求解柔性作业车间调度问题(FJSP),提供
    一、柔性作业车间调度问题柔性作业车间调度问题(FlexibleJobShopSchedulingProblem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工......
  • MSSQLServer dbo没有智能提示/红色报错波浪线
    使用SQLServer的时候碰到了一个问题,就是已经在[24_3_25]中创建了temp1表,但是左侧对象资源管理器窗口中没显示,而且没有输入提示,还有红色报错波浪线。如图所示解决方法:资源管理器没显示选中“表”选择刷新对于报错波浪线和没提示的问题看看是否是因为开启智能提示点击......
  • 多目标应用:基于非支配排序的蜣螂优化算法(Non-Dominated Sorting Dung beetle optimize
    一、柔性作业车间调度问题柔性作业车间调度问题(FlexibleJobSchedulingProblem,FJSP)的描述如下:n个工件{J,J......
  • train_transforms,Normalize,CrossEntropyLoss,optimizer,前向传播进行特征提取,反向传播优
    目录train_transforms:变换Normalize(mean=127.5,std=127.5) :缩放到[-1,1]......
  • 基于DBO-CNN-BiLSTM数据回归预测(多输入单输出),蜣螂优化算法优化CNN-BiLSTM-附代码
    基于DBO-CNN-BiLSTM的数据回归预测是一种综合利用了深度学习中的多种技术的方法,包括卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)。蜣螂优化算法用于优化CNN-BiLSTM模型的参数。以下是基于DBO-CNN-BiLSTM的数据回归预测的原理:CNN(卷积神经网络):CNN是一......
  • DBO优化GRNN回归预测(matlab代码)
    DBO-GRNN回归预测matlab代码蜣螂优化算法(DungBeetleOptimizer,DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。数据为Excel股票预测数据。数据集划分为训练集、验证集、测试集,比例为8:1:1模块化结构:代码按照功......
  • DBO优化最近邻分类预测(matlab代码)
    DBO-最近邻分类预测matlab代码蜣螂优化算法(DungBeetleOptimizer,DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。数据为Excel分类数据集数据。数据集划分为训练集、验证集、测试集,比例为8:1:1模块化结构:代码按......
  • DBO优化朴素贝叶斯分类预测(matlab代码)
    DBO-朴素贝叶斯分类预测matlab代码蜣螂优化算法(DungBeetleOptimizer,DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。数据为Excel分类数据集数据。数据集划分为训练集、验证集、测试集,比例为8:1:1模块化结构:代......
  • 关于qiankun沙箱sandbox
    为什么要有js资源隔离机制?主应用和子应用,相同的全局变量,可能会发生冲突,子应用和子应用之间,相同的全局变量,也可能会发生冲突。在这里我们主要指的就是window。思路:打开沙箱时能够修改属性值;关闭沙箱时恢复未开启沙箱前的属性值,并且要记录修改了哪些属性。qiankun.js隔离机制Sn......
  • Collider和Rigidbody组件相关
    Rigidbodydynamic类型开销最大的类型拥有完整的功能(现实世界相同的物体)会和所有类型的刚体碰撞会受到各种力的影响kinematic类型仍然通过速度移动但并不受到任何力的影响也只会与dynamic发生碰撞,发生碰撞时近似于无限质量的物体(不会改变运动状态)static类型本意......